ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio-loud active galactic nuclei are among the most powerful objects in the universe. In these objects, most of the emission comes from relativistic jets getting their power from the accretion of matter onto supermassive black holes. However, despit e the number of studies, a jets acceleration to relativistic speeds is still poorly understood. It is widely known that jets contain relativistic particles that emit radiation through several physical processes, one of them being the inverse Compton scattering of photons coming from external sources. In the case of a plasma composed of electrons and positrons continuously heated by the turbulence, inverse Compton scattering can lead to relativistic bulk motions through the Compton rocket effect. We investigate this process and compute the resulting bulk Lorentz factor in the complex photon field of an AGN composed of several external photon sources. We consider various sources here: the accretion disk, the dusty torus, and the broad line region. We take their geometry and anisotropy carefully into account in order to numerically compute the bulk Lorentz factor of the jet at every altitude. The study, made for a broad range of parameters, shows interesting and unexpected behaviors of the bulk Lorentz factor, exhibiting acceleration and deceleration zones in the jet. We investigate the patterns of the bulk Lorentz factor along the jet depending on the source sizes and on the observation angle and we finally show that these patterns can induce variability in the AGN emission with timescales going from hours to months.
A major uncertainty in models for photoionised outflows in AGN is the distance of the gas to the central black hole. We present the results of a massive multiwavelength monitoring campaign on the bright Seyfert 1 galaxy Mrk 509 to constrain the locat ion of the outflow components dominating the soft X-ray band. Mrk 509 was monitored by XMM-Newton, Integral, Chandra, HST/COS and Swift in 2009. We have studied the response of the photoionised gas to the changes in the ionising flux produced by the central regions. We were able to put tight constraints on the variability of the absorbers from day to year time scales. This allowed us to develop a model for the time-dependent photoionisation in this source. We find that the more highly ionised gas producing most X-ray line opacity is at least 5 pc away from the core; upper limits to the distance of various absorbing components range between 20 pc up to a few kpc. The more lowly ionised gas producing most UV line opacity is at least 100 pc away from the nucleus. These results point to an origin of the dominant, slow (v<1000 km/s) outflow components in the NLR or torus-region of Mrk 509. We find that while the kinetic luminosity of the outflow is small, the mass carried away is likely larger than the 0.5 Solar mass per year accreting onto the black hole. We also determined the chemical composition of the outflow as well as valuable constraints on the different emission regions. We find for instance that the resolved component of the Fe-K line originates from a region 40-1000 gravitational radii from the black hole, and that the soft excess is produced by Comptonisation in a warm (0.2-1 keV), optically thick (tau~10-20) corona near the inner part of the disk.
After a rapid introduction about the models of comptonization, we present some simulations that underlines the expected capabilities of Simbol-X to constrain the presence of this process in objects like AGNs or XRB.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا