ترغب بنشر مسار تعليمي؟ اضغط هنا

The cross-spectral density (CSD) of the non-linear forcing in resolvent analyses is here quantified for the first time for turbulent channel flows. Direct numerical simulations (DNS) at $Re_{tau} =179$ and $Re_{tau} =543$ are performed. The CSDs are computed for highly energetic structures typical of buffer-layer and large-scale motions, for different temporal frequencies. The CSD of the non-linear forcing is shown not to be uncorrelated (white) in space, which implies the forcing is structured. Since the non-linear forcing is non-solenoidal by construction and the velocity of an incompressible flow is affected only by the solenoidal part of the forcing, this solenoidal part is evaluated. It is shown that the solenoidal part of the non-linear forcing is the combination of oblique streamwise vortices and a streamwise component which counteract each other, as in a destructive interference. It is shown that a rank-2 approximation of the forcing, with only the most energetic SPOD (spectral proper orthogonal decomposition) modes, leads to the bulk of the response. The projections of the non-linear forcing onto the right-singular vectors of the resolvent are evaluated. The left-singular vectors of the resolvent associated with very low-magnitude singular values are non-negligible since the non-linear forcing term has a non-negligible projection onto the linear sub-optimals of resolvent analysis. The same projections are computed when the forcing is modelled with an eddy-viscosity approach. It is clarified that this modelling improves the accuracy of the prediction since the projections are closer to those associated with the non-linear forcing from DNS data.
An analysis of the statistics of the non-linear terms in resolvent analysis is performed in this work for turbulent Couette flow at low Reynolds number. Data from a direct numerical simulation of a minimal flow unit, at Reynolds number 400, is post-p rocessed using Fourier analysis in both time and space, leading to the covariance matrix of the velocity. From the same data, we computed the non-linear terms of the Navier-Stokes equations (treated as forcing in the present formulation), which allowed us to compute the covariance matrix of the forcing for this case. The two covariances are related exactly by the resolvent operator; based on this, we explore the recovery of the velocity statistics from the statistics of the forcing as a function of the components of the forcing term. This is carried out for the dominant structures in this flow, which participate in the self-sustaining cycle of turbulence: (i) streamwise vortices and streaks, and (ii) spanwise coherent fluctuations of spanwise velocity. The present results show a dominance by four of the non-linear terms for the prediction of the full statistics of streamwise vortices and streaks; a single term is seen to be dominant for spanwise motions. A relevant feature observed in these cases is that forcing terms have significant coherence in space; moreover, different forcing components are also coherent between them. This leads to constructive and destructive interferences that greatly modify the flow response, and should thus be accounted for in modelling work.
The current work presents a realizable method to control streaky disturbances in boundary layer flows and delay transition to turbulence via active flow control. Numerical simulations of the nonlinear transitional regime in a Blasius boundary layer a re performed where streaks are excited in the boundary layer via a high level of free-stream turbulence (FST). The occurring disturbances are measured via localized wall sensors and damped via near-wall actuators resembling plasma actuators. The time-varying amplitude of the signal of each actuator is computed by processing signals from the sensors. This processing is the result of two control laws: the Linear Quadratic Gaussian regulator (LQG) and the Inverse Feed-Forward Control technique (IFFC). The use of the first, LQG, requires a state-space representation of the system dynamics, so the flow is described via an operator that captures only the most relevant information of the dynamics and results in a reduced order model (ROM). The ROM is computed via the eigensystem realization algorithm, based on the impulse responses of the real system. Collecting such impulse responses may be unfeasible when considering FST because of the high dimensionality of the input forcing needed for a precise description of such a phenomenon. Here, a new method to identify the relevant system dynamics and generate the needed impulse responses is proposed, in a data-driven approach that would be realizable in experiments. Finally, the effectiveness of the technique in delaying bypass transition is shown. The work (i) presents a systematic way to deal with high dimensional disturbances to build ROMs for a control technique, and (ii) shows that even when considering constraints such as the type and size of actuators and sensors, it is possible to achieve at least as large delay of bypass transition as that obtained in more idealized cases found in literature.
This work deals with the closed-loop control of streaky structures induced by free-stream turbulence in a zero-pressure gradient, transitional boundary layer, by means of localized sensors and actuators. A linear quadratic gaussian regulator is consi dered along with a system identification technique to build reduced-order models for control. Three actuators are developed with different spatial supports, corresponding to a baseline shape with only vertical forcing, and to two other shapes obtained by different optimization procedures. A computationally efficient method is derived to obtain an actuator which aims to induce the exact structures which are inside the boundary layer, given in terms of their first spectral proper orthogonal decomposition mode, and an actuator that maximizes the energy of induced downstream structures. Two free-stream turbulence levels were evaluated, corresponding to 3.0% and 3.5%, and closed-loop control is applied in large-eddy simulations of transitional boundary layers. All three actuators lead to significant delays in the transition to turbulence and were shown to be robust to mild variations in the free-stream turbulence levels. Differences are understood in terms of the SPOD of actuation and FST-induced fields along with the causality of the control scheme. The actuator optimized to generate the leading downstream SPOD mode, representing the streaks in the open-loop flow, leads to the highest transition delay, which can be understood due to its capability of closely cancelling structures in the boundary layer. However, it is shown that even with the actuator located downstream of the input measurement it may become impossible to cancel incoming disturbances in a causal way, depending on the wall-normal position of the output and on the actuator considered, which limits sensor and actuator placement capable of good closed-loop performance.
The ability of linear stochastic response analysis to estimate coherent motions is investigated in turbulent channel flow at friction Reynolds number Re$_tau$ = 1007. The analysis is performed for spatial scales characteristic of buffer-layer and lar ge-scale motions by separating the contributions of different temporal frequencies. Good agreement between the measured spatio-temporal power spectral densities and those estimated by means of the resolvent is found when the effect of turbulent Reynolds stresses, modelled with an eddy-viscosity associated to the turbulent mean flow, is included in the resolvent operator. The agreement is further improved when the flat forcing power spectrum (white noise) is replaced with a power spectrum matching the measures. Such a good agreement is not observed when the eddy-viscosity terms are not included in the resolvent operator. In this case, the estimation based on the resolvent is unable to select the right peak frequency and wall-normal location of buffer-layer motions. Similar results are found when comparing truncated expansions of measured streamwise velocity power spectral densities based on a spectral proper orthogonal decomposition to those obtained with optimal resolvent modes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا