ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb lattice. It was first obtained by exfoliation of graphite in 2004 and has since evolved into a thriving research topic because of its attractive mechanical, thermal, and elect rical properties. Graphenes unique electrical properties derive from the relativistic nature of its quasiparticles, resulting in exceptionally high electron mobility. Graphene promises to revolutionize many applications, ranging from solar cells and light-emitting devices to touch screens, photodetectors, microwave transistors, and ultrafast lasers.
Emerging technology based on artificial materials containing metallic structures has raised the prospect for unprecedented control of terahertz waves through components like filters, absorbers and polarizers. The functionality of these devices is sta tic by the very nature of their metallic or polaritonic composition, although some degree of tunability can be achieved by incorporating electrically biased semiconductors. Here, we demonstrate a photonic structure by projecting the optical image of a metal mask onto a thin GaAs substrate using a femtosecond pulsed laser source. We show that the resulting high-contrast pattern of photo- excited carriers can create diffractive elements operating in transmission. With the metal mask replaced by a digital micromirror device, our photo-imprinted photonic structures provide a route to terahertz components with reconfigurable functionality.
We demonstrate a nonlinear metamaterial that can be switched between low and high transmission by controlling the power level of the incident beam. The origin of this nonlinear response is the superconducting Nb thin film employed in the metamaterial structure. We show that with moderate RF power of about 22 dBm it is possible to quench the superconducting state as a result of extremely strong current densities at the corners of the metamaterials split-ring resonators. We measure a transmission contrast of 10 dB and a change in group delay of 70 ns between the low and high power states.
Metamaterials are engineered materials composed of small electrical circuits producing novel interactions with electromagnetic waves. Recently, a new class of metamaterials has been created to mimic the behavior of media displaying electromagneticall y induced transparency (EIT). Here we introduce a planar EIT metamaterial that creates a very large loss contrast between the dark and radiative resonators by employing a superconducting Nb film in the dark element and a normal-metal Au film in the radiative element. Below the critical temperature of Nb, the resistance contrast opens up a transparency window along with a large enhancement in group delay, enabling a significant slowdown of waves. We further demonstrate precise control of the EIT response through changes in the superfluid density. Such tunable metamaterials may be useful for telecommunication because of their large delay-bandwidth products.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا