ترغب بنشر مسار تعليمي؟ اضغط هنا

One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves

120   0   0.0 ( 0 )
 نشر من قبل Nianhai Shen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Emerging technology based on artificial materials containing metallic structures has raised the prospect for unprecedented control of terahertz waves through components like filters, absorbers and polarizers. The functionality of these devices is static by the very nature of their metallic or polaritonic composition, although some degree of tunability can be achieved by incorporating electrically biased semiconductors. Here, we demonstrate a photonic structure by projecting the optical image of a metal mask onto a thin GaAs substrate using a femtosecond pulsed laser source. We show that the resulting high-contrast pattern of photo- excited carriers can create diffractive elements operating in transmission. With the metal mask replaced by a digital micromirror device, our photo-imprinted photonic structures provide a route to terahertz components with reconfigurable functionality.

قيم البحث

اقرأ أيضاً

The recent development of the terahertz waveguide makes it an excellent platform for integrating many intriguing functionalities, which offers tremendous potential to build compact and robust terahertz systems. In the context of next-generation high- speed communication links at the terahertz band, engineering the dispersion and birefringence of terahertz waves is essential. Here, we experimentally demonstrate subwavelength birefringent waveguide gratings based on the low-loss cyclic olefin copolymer exploiting micro-machining fabrication techniques. Asymmetric cross-section and periodic-structural modulation along propagation direction are introduced to achieve birefringent THz grating for filtering and dispersion compensation. Because of strong index modulation in the subwavelength fiber, a high negative group velocity dispersion of -188 (-88) ps/mm/THz is achieved at 0.15 THz for x-polarization (y-polarization), i.e., 7.5 times increase compared to the state-of-the-art reported to date. Such high negative dispersion is realized in a 43 mm grating length, which is less than half of the length reported until now (e.g., 100 mm). Further, the subwavelength fiber grating filters two orthogonal polarization states and exhibits transmission dips with 8.5-dB and 7.5-dB extinction ratios for x and y polarization, respectively. Our experiment demonstrates the feasibility of using polymer-based terahertz gratings as a dispersion compensator in terahertz communications and steering polarized terahertz radiations for polarization-sensitive THz systems.
A one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able t o absorb up to 60% of the impinging light at normal incidence for both TE and TM polarizations resulting in a theoretical enhancement factor of about 26 with respect to the monolayer graphene absorption (about 2.3%). Experimental results confirm this behaviour showing CVD graphene absorbance peaks up to about 40% over narrow bands of few nanometers. The simple and flexible design paves the way for the realization of innovative, scalable and easy-to-fabricate graphene-based optical absorbers.
We discuss the applicability of holographically recorded gratings in photopolymers and holographic polymer-dispersed liquid crystals as neutron optical elements. An experimental investigation of their properties for light and neutrons with different grating spacings and grating thicknesses is performed. The angular dependencies of the diffraction efficiencies for those gratings are interpreted in terms of a rigourous coupled wave analysis. Starting from the obtained results we work out the lines for the production of an optimised neutron optical diffraction grating, i.e., high diffraction efficiency in the Bragg diffraction regime with moderate angular selectivity.
We report on the optical characterization of an ultra-high diffraction efficiency grating in 1st order Littrow configuration. The apparatus used was an optical cavity built from the grating under investigation and an additional high reflection mirror . Measurement of the cavity finesse provided precise information about the gratings diffraction efficiency and its optical loss. We measured a finesse of 1580 from which we deduced a diffraction efficiency of (99.635$pm$0.016)% and an overall optical loss due to scattering and absorption of just 0.185 %. Such high quality gratings, including the tool used for their characterization, might apply for future gravitational wave detectors. For example the demonstrated cavity itself presents an all-reflective, low-loss Fabry-Perot resonator that might replace conventional arm cavities in advanced high power Michelson interferometers.
85 - Y. Tomita , A. Kageyama , Y. Iso 2020
We demonstrate the use of nanodiamond in constructing holographic nanoparticle-polymer composite transmission gratings with large saturated refractive index modulation amplitudes at both optical and slow-neutron wavelengths, resulting in efficient co ntrol of light and slow-neutron beams. Nanodiamond possesses a high refractive index at optical wavelengths and large coherent and small incoherent scattering cross sections with low absorption at slow-neutron wavelengths. We describe the synthesis of nanodiamond, the preparation of photopolymerizable nanodiamond-polymer composite films, the construction of transmission gratings in nanodiamond-polymer composite films and light optical diffraction experiments. Results of slow-neutron diffraction from such gratings are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا