ترغب بنشر مسار تعليمي؟ اضغط هنا

The aim of this paper is to develop suitable models for the phenomenon of cell blebbing, which allow for computational predictions of mechanical effects including the crucial interaction of the cell membrane and the actin cortex. For this sake we res ort to a two phase-field model that uses diffuse descriptions of both the membrane and the cortex, which in particular allows for a suitable description of the interaction via linker protein densities. Besides the detailed modelling we discuss some energetic aspects of the models and present a numerical scheme, which allows to carry out several computational studies. In those we demonstrate that several effects found in experiments can be reproduced, in particular bleb formation by cortex rupture, which was not possible by previous models without the linker dynamics.
Laser driving in systems with competing or coupled electronic orders can lead to the enhancement of orders, or even to the appearance of hidden phases without an equilibrium analogue. Here we consider a model for A$_3$C$_{60}$ which exhibits a unique interplay between conventional and odd-frequency (or composite) orders. In particular, we show that photo-doping of the antiferromagnetic Mott insulating phase, as realized in Cs$_3$C$_{60}$, results in a paramagnetic gapped state with broken orbital symmetry. This hidden phase, which does not exist under equilibrium conditions, can be interpreted as an odd-frequency orbital-ordered state, and is conceptually related to the equilibrium Jahn-Teller metal in more weakly correlated compounds. Our study demonstrates the appearance of pure odd-frequency order via the nonthermal melting of magnetic order, and provides an interesting example of nonequilibrium control of electronic orders in a multi-orbital system.
The reliable {it ab-initio} description of strongly correlated materials is a long-sought capability in condensed matter physics. The $GW$+EDMFT method is a promising scheme, which provides a self-consistent description of correlations and screening, and does not require user-provided parameters. In order to test the reliability of this approach we apply it to the experimentally well characterized perovskite compound Ca$_2$RuO$_4$, in which a temperature-dependent structural deformation drives a paramagnetic metal-insulator transition. Our results demonstrate that the nonlocal polarization and self-energy components introduced by $GW$ are essential for setting the correct balance between interactions and bandwidths, and that the $GW$+EDMFT scheme produces remarkably accurate predictions of the electronic properties of this strongly correlated material.
We use the nonequilibrium dynamical mean field theory formalism to compute the equilibrium and nonequilibrium resonant inelastic X-ray scattering (RIXS) signal of a strongly interacting fermionic lattice model with a coupling of dispersionless phonon s to the total charge on a given site. In the atomic limit, this model produces phonon subbands in the spectral function, but not in the RIXS signal. Electron hopping processes however result in phonon-related modifications of the charge excitation peak. We discuss the equilibrium RIXS spectra and the characteristic features of nonequilibrium states induced by photo-doping and by the application of a static electric field. The latter produces features related to Wannier-Stark states, which are dressed with phonon sidebands. Thanks to the effect of field-induced localization, the phonon features can be clearly resolved even in systems with weak electron-phonon coupling.
We study non-linear optical effects in electron systems with and without inversion symmetry in a Fabry-Perot cavity. General photon up- and down-conversion processes are modeled by the coupling of a noninteracting lattice model to two modes of the qu antized light field. Effective descriptions retaining the most relevant states are devised via downfolding and a generalized Householder transformation. These models are used to relate the transition amplitudes for even order photon-conversion processes to the shift vector, a topological quantity describing the difference in polarization between the valence and conduction band in non-centrosymmetric systems. We also demonstrate that the truncated models, despite their small Hilbert space, capture correlation effects induced by the photons in the electronic subsystem.
We discuss the mechanism and the conditions for the appearance of synchronized charge oscillations which have been observed experimentally and theoretically after strong photoexcitation of dimerized systems. In the Hubbard model with on-site repulsio n, the Bloch equations for a wave-number-dependent pseudospin -- whose components describe the charge-density difference, current density, and bond density between the two sublattices -- involve an alternatingly tilted pseudomagnetic field, which assists the synchronization of pseudospins with different wave numbers, irrespective of the initial condition. This fact is numerically confirmed by the dynamics in finite lattices based on the exact diagonalization method. In the presence of nearest-neighbor repulsion, however, the synchronization can be hindered by excitons. Therefore, the excitation of a sufficiently large density of free electron-hole pairs, but low density of excitons, is needed to achieve synchronization.
Resonant inelastic X-ray scattering (RIXS) detects various types of high- and low-energy elementary excitations in correlated solids, and this tool will play an increasingly important role in investigations of time-dependent phenomena in photo-excite d systems. While theoretical frameworks for the computation of equilibrium RIXS spectra are well established, the development of appropriate methods for nonequilibrium simulations are an active research field. Here, we apply a recently developed nonequilibrium dynamical mean field theory (DMFT) based approach to compute the RIXS response of photo-excited two-orbital Mott insulators. The results demonstrate the feasibility of multi-orbital nonequilibrium RIXS calculations and the sensitivity of the quasi-elastic fluorescence-like features and d-d excitation peaks on the nonequilibrium population of the Hubbard bands.
We show that the numerically exact bold-line diagrammatic theory for the $2d$ Hubbard model exhibits a non-Fermi-liquid (NFL) strange metal state, which is connected to the SYK NFL in the strong-interaction limit. The solution for the doped system fe atures the expected phenomenology with the NFL near half-filling at strong couplings and in a wide temperature range enclosed by the atomic state at high temperatures and a Fermi liquid at low temperatures. We demonstrate, however, that this behavior in the weakly doped regime is due to the unphysical branch of the Luttinger-Ward functional. On the other hand, our analysis shows that the NFL physics is realized at larger doping.
The effective interaction of downfolded low-energy models for electrons in solids can be obtained by integrating out the high energy bands away from the target band near the Fermi level. Here, we apply the constrained random-phase approximation (cRPA ) and constrained functional renormalization group (cfRG), which can go beyond cRPA by including all one-loop diagrams, to calculate and compare the effective interactions of the three-band Emery model, which is often used to investigate cuprate high-temperature superconductors. At half band filling, we find that the effective interaction increases as the charge transfer energy ($Delta_{dp}$) increases and similar behavior is obtained as a function of the interatomic 2$p$-3$d$ interaction ($U_{dp}$). However, the effective interaction is more sensitive to $Delta_{dp}$ than $ U_{dp}$. For most of the parameter sets, the effective static interaction is overscreened in cRPA compared to cfRG. The low-energy models at half-filling are solved within dynamical mean-field theory (DMFT). The results show that despite the different static interactions, the systems with cRPA and cfRG interaction exhibit a Mott transition at similar values of $Delta_{dp}$. We also investigate the effective interaction as a function of doping. The cfRG effective interaction decreases as the electron number increases and displays a trend opposite to that of cRPA. Antiscreening is observed for the hole-doped case. For all the cases studied, the near-cancellation of the direct particle-hole channel is observed. This indicates that at least for the downfolding of the onsite interaction terms, methods beyond cRPA may be required.
The optical conductivity contains relevant information on the properties of correlated electron systems. In infinite dimensions, where dynamical mean field theory becomes exact, vertex corrections can be neglected and the conductivity computed from p article-hole bubbles. An interesting question concerns the nature and effect of the most relevant vertex corrections in finite-dimensional systems. A recent numerical study showed that the dominant vertex correction near an ordering instability with wave vector {pi} comes from a vertical ladder, analogous to the Maki-Thompson diagram. Since the RPA version of this ladder diagram, dubbed {pi}-ton, can be easily evaluated, this suggests a simple procedure for incorporating antiferromagnetic or charge density wave fluctuations into dynamical mean field estimates of the optical conductivity and related susceptibilities. We implement this procedure for the half-filled Hubbard model, considering the {pi}-ton and a double-ladder extension of the {pi}-ton, and reveal the spectral signatures of these vertex corrections.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا