ترغب بنشر مسار تعليمي؟ اضغط هنا

238 - Philip Chang 2014
Very-high energy gamma-rays from extragalactic sources pair-produce off of the extragalactic background light, yielding an electron-positron pair beam. This pair beam is unstable to various plasma instabilities, especially the oblique instability, wh ich can be the dominant cooling mechanism for the beam. However, recently, it has been claimed that nonlinear Landau damping renders it physically irrelevant by reducing the effective damping rate to a low level. Here, we show with numerical calculations that the effective damping rate is $8times 10^{-4}$ of the growth rate of the linear instability, which is sufficient for the oblique instability to be the dominant cooling mechanism of these pair beams. In particular, we show that previous estimates of this rate ignored the exponential cutoff in the scattering amplitude at large wavenumber and assumed that the damping of scattered waves entirely depends on collisions, ignoring collisionless processes. We find that the total wave energy eventually grows to approximate equipartition with the beam by increasingly depositing energy into long wavelength modes. As we have not included the effect of nonlinear wave-wave interactions on these long wavelength modes, this scenario represents the worst-case scenario for the oblique instability. As it continues to drain energy from the beam at a faster rate than other processes, we conclude that the oblique instability is sufficiently strong to make it the physically dominant cooling mechanism for high-energy pair beams in the intergalactic medium.
We present a model of star formation in self-gravitating turbulent gas. We treat the turbulent velocity $v_T$ as a dynamical variable, and assume that it is adiabatically heated by the collapse. The theory predicts the run of density, infall velocity , and turbulent velocity, and the rate of star formation in compact massive gas clouds. The turbulent pressure is dynamically important at all radii, a result of the adiabatic heating. The system evolves toward a coherent spatial structure with a fixed run of density, $rho(r,t)torho(r)$; mass flows through this structure onto the central star or star cluster. We define the sphere of influence of the accreted matter by $m_*=M_g(r_*)$, where $m_*$ is the stellar plus disk mass in the nascent star cluster and $M_g(r)$ is the gas mass inside radius $r$. The density is given by a broken power law with a slope $-1.5$ inside $r_*$ and $sim -1.6$ to $-1.8$ outside $r_*$. Both $v_T$ and the infall velocity $|u_r|$ decrease with decreasing $r$ for $r>r_*$; $v_T(r)sim r^p$, the size-linewidth relation, with $papprox0.2-0.3$, explaining the observation that Larsons Law is altered in massive star forming regions. The infall velocity is generally smaller than the turbulent velocity at $r>r_*$. For $r<r_*$, the infall and turbulent velocities are again similar, and both increase with decreasing $r$ as $r^{-1/2}$, with a magnitude about half of the free-fall velocity. The accreted (stellar) mass grows super-linearly with time, $dot M_*=phi M_{rm cl}(t/tau_{ff})^2$, with $phi$ a dimensionless number somewhat less than unity, $M_{rm cl}$ the clump mass and $tau_{ff}$ the free-fall time of the clump. We suggest that small values of p can be used as a tracer of convergent collapsing flows.
105 - Chenchong Zhu 2012
The merger of two carbon-oxygen white dwarfs can lead either to a spectacular transient, stable nuclear burning or a massive, rapidly rotating white dwarf. Simulations of mergers have shown that the outcome strongly depends on whether the white dwarf s are similar or dissimilar in mass. In the similar-mass case, both white dwarfs merge fully and the remnant is hot throughout, while in the dissimilar case, the more massive, denser white dwarf remains cold and essentially intact, with the disrupted lower mass one wrapped around it in a hot envelope and disk. In order to determine what constitutes similar in mass and more generally how the properties of the merger remnant depend on the input masses, we simulated unsynchronized carbon-oxygen white dwarf mergers for a large range of masses using smoothed-particle hydrodynamics. We find that the structure of the merger remnant varies smoothly as a function of the ratio of the central densities of the two white dwarfs. A density ratio of 0.6 approximately separates similar and dissimilar mass mergers. Confirming previous work, we find that the temperatures of most merger remnants are not high enough to immediately ignite carbon fusion. During subsequent viscous evolution, however, the interior will likely be compressed and heated as the disk accretes and the remnant spins down. We find from simple estimates that this evolution can lead to ignition for many remnants. For similar-mass mergers, this would likely occur under sufficiently degenerate conditions that a thermonuclear runaway would ensue.
Recent studies have shown that for suitable initial conditions both super- and sub-Chandrasekhar mass carbon-oxygen white dwarf mergers produce explosions similar to observed SNe Ia. The question remains, however, how much fine tuning is necessary to produce these conditions. We performed a large set of SPH merger simulations, sweeping the possible parameter space. We find trends for merger remnant properties, and discuss how our results affect the viability of our recently proposed sub-Chandrasekhar merger channel for SNe Ia.
A subset of blazars emit TeV gamma rays which annihilate and pair produce on the extragalactic background light. We have argued in Broderick et al. (2011, Paper I) that plasma beam instabilities can dissipate the pairs energy locally. This heats the intergalactic medium and dramatically increases its entropy after redshift z~2, with important implications for structure formation: (1) This suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers - counteracting cooling and raising the core entropy further. Hence blazar heating works different than feedback by active galactic nuclei, which balances radiative cooling but is unable to transform CC into NCC clusters due to the weak coupling to the cluster gas. (2) We predict a suppression of the Sunyaev-Zeldovich power spectrum on angular scales smaller than 5 due to the globally reduced central pressure of groups and clusters forming after z~1. (3) Our redshift dependent entropy floor increases the characteristic halo mass below which dwarf galaxies cannot form by a factor of ~10 (50) at mean density (in voids) over that found in models that include photoionization alone. This prevents the formation of late forming dwarf galaxies (z<2) with masses ranging from 10^{10} to 10^{11} M_sun for redshifts z~2 to 0, respectively. This may help resolve the missing satellite problem in the Milky Way and the void phenomenon of the low observed abundances of dwarf satellites compared to cold dark matter simulations and may bring the observed early star formation histories into agreement with galaxy formation models. (abridged)
The Universe is opaque to extragalactic very high-energy gamma rays (VHEGRs, E>100 GeV) because they annihilate and pair produce on the extragalactic background light. The resulting ultra-relativistic pairs are assumed to lose energy through inverse Compton scattering of CMB photons. In Broderick et al. (2011, Paper I of this three paper series), we argued that instead powerful plasma instabilities in the ultra-relativistic pair beam dissipate the kinetic energy of the TeV-generated pairs locally, heating the intergalactic medium (IGM). Here, we explore the effect of this heating upon the thermal history of the IGM. We collate the observed extragalactic VHEGR sources to determine a local VHEGR heating rate and correct for the pointed nature of VHEGR observations using Fermi observations of high and intermediate peaked BL Lacs. Because the local extragalactic VHEGR flux is dominated by TeV blazars, we tie the TeV blazar luminosity density to the quasar luminosity density, and produce a VHEGR heating rate as a function of redshift. This heating is relatively homogeneous for z<~4 with increasing spatial variation at higher redshift (order unity at z~6). This new heating process dominates photoheating at low redshift and the inclusion of TeV blazar heating qualitatively and quantitatively changes the structure and history of the IGM. TeV blazars produce a uniform volumetric heating rate that is sufficient to increase the temperature of the mean density IGM by nearly an order of magnitude, and at low densities by substantially more, naturally producing an inverted equation of state inferred by observations of the Ly-alpha forest, a feature that is difficult to reconcile with standard reionization models. Finally, we close with a discussion on the possibility of detecting this hot low-density IGM, but find that such measurements are currently not feasible. (abridged)
94 - Anthony L. Piro 2009
The mode of explosive burning in Type Ia SNe remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the DDT). We argue that this transition leads to a breakou t shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (~20 keV) lasting ~0.01 s with a total radiated energy of ~10^{40} ergs, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M_V = -9 to -10 at approximately 1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m=24) will see it out to a distance of approximately 80 Mpc, giving a maximum rate of ~60/yr. Archival data sets can also be used to study the early rise dictated by the shock heating (at about 20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion induced collapse to a neutron star, but with a lower occurrence rate.
We study the long term evolution of magnetic fields generated by an initially unmagnetized collisionless relativistic $e^+e^-$ shock. Our 2D particle-in-cell numerical simulations show that downstream of such a Weibel-mediated shock, particle distrib utions are approximately isotropic, relativistic Maxwellians, and the magnetic turbulence is highly intermittent spatially, nonpropagating, and decaying. Using linear kinetic theory, we find a simple analytic form for these damping rates. Our theory predicts that overall magnetic energy decays like $(omega_p t)^{-q}$ with $q sim 1$, which compares favorably with simulations, but predicts overly rapid damping of short wavelength modes. Magnetic trapping of particles within the magnetic structures may be the origin of this discrepancy. We conclude that initially unmagnetized relativistic shocks in electron-positron plasmas are unable to form persistent downstream magnetic fields. These results put interesting constraints on synchrotron models for the prompt and afterglow emission from GRBs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا