ترغب بنشر مسار تعليمي؟ اضغط هنا

Star Formation in Self-Gravitating Turbulent Fluids

159   0   0.0 ( 0 )
 نشر من قبل Norman Murray
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a model of star formation in self-gravitating turbulent gas. We treat the turbulent velocity $v_T$ as a dynamical variable, and assume that it is adiabatically heated by the collapse. The theory predicts the run of density, infall velocity, and turbulent velocity, and the rate of star formation in compact massive gas clouds. The turbulent pressure is dynamically important at all radii, a result of the adiabatic heating. The system evolves toward a coherent spatial structure with a fixed run of density, $rho(r,t)torho(r)$; mass flows through this structure onto the central star or star cluster. We define the sphere of influence of the accreted matter by $m_*=M_g(r_*)$, where $m_*$ is the stellar plus disk mass in the nascent star cluster and $M_g(r)$ is the gas mass inside radius $r$. The density is given by a broken power law with a slope $-1.5$ inside $r_*$ and $sim -1.6$ to $-1.8$ outside $r_*$. Both $v_T$ and the infall velocity $|u_r|$ decrease with decreasing $r$ for $r>r_*$; $v_T(r)sim r^p$, the size-linewidth relation, with $papprox0.2-0.3$, explaining the observation that Larsons Law is altered in massive star forming regions. The infall velocity is generally smaller than the turbulent velocity at $r>r_*$. For $r<r_*$, the infall and turbulent velocities are again similar, and both increase with decreasing $r$ as $r^{-1/2}$, with a magnitude about half of the free-fall velocity. The accreted (stellar) mass grows super-linearly with time, $dot M_*=phi M_{rm cl}(t/tau_{ff})^2$, with $phi$ a dimensionless number somewhat less than unity, $M_{rm cl}$ the clump mass and $tau_{ff}$ the free-fall time of the clump. We suggest that small values of p can be used as a tracer of convergent collapsing flows.



قيم البحث

اقرأ أيضاً

Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of $-1.35$ when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.
151 - J.-M. Wang , P. Du , J. A. Baldwin 2012
(abridged) We study the consequence of star formation (SF) in an self-gravity dominated accretion disk in quasars. The warm skins of the SF disk are governed by the radiation from the inner part of the accretion disk to form Compton atmosphere (CAS). The CAS are undergoing four phases to form broad line regions. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of BLRs. Geometry and dynamics of BLRs can be self-consistently derived from the thermal instability of the CAS during phases II and III by linear analysis. The metallicity gradient of SF disk gives rise to different properties of clouds from outer to inner part of BLRs. We find that clouds have column density N_H < 10^22cm^{-2} in the metal-rich regions whereas they have N_H > 10^22 cm^{-2} in the metal-poor regions. The metal-rich clouds compose the high ionization line (HIL) regions whereas the metal-poor clouds are in low ionization line (LIL) regions. Metal-rich clouds in HIL regions will be blown away by radiation pressure, forming the observed outflows. The LIL regions are episodic due to the mass cycle of clouds with the CAS in response to continuous injection by the SF disk, giving rise to different types of AGNs. Based on SDSS quasar spectra, we identify a spectral sequence in light of emission line equivalent width from Phase I to IV. A key phase in the episodic appearance of the BLRs is bright type II AGNs with no or only weak BLRs. We discuss observational implications and tests of the theoretical predictions of this model.
We use ZEUS-MP to perform high resolution, three-dimensional, super-Alfvenic turbulent simulations in order to investigate the role of magnetic fields in self-gravitating core formation within turbulent molecular clouds. Statistical properties of our super-Alfvenic model without gravity agree with previous similar studies. Including self-gravity, our models give the following results. They are consistent with the turbulent fragmentation prediction of the core mass distribution of Padoan & Nordlund. They also confirm that local gravitational collapse is not prevented by magnetohydrodynamic waves driven by turbulent flows, even when the turbulent Jeans mass exceeds the mass in the simulation volume. Comparison of results between 256^3 and 512^3 zone simulations reveals convergence in the collapse rate. Analysis of self-gravitating cores formed in the simulation shows that: (1) All cores formed are magnetically supercritical by at least an order of magnitude. (2) A power law relation between central magnetic field strength and density B_c propto rho_c^{1/2} is observed despite the cores being strongly supercritical. (3) Specific angular momentum j propto R^{3/2} for cores with radius R. (4) Most cores are prolate and triaxial in shape, in agreement with the results of Gammie et al.
We construct a series of model galaxies in rotational equilibrium consisting of gas, stars, and a fixed dark matter (DM) halo and study how these equilibrium systems depend on the mass and form of the DM halo, gas temperature, non-thermal and rotatio n support against gravity, and also on the redshift of galaxy formation. For every model galaxy we find the minimum gas mass M_g^min required to achieve a state in which star formation (SF) is allowed according to contemporary SF criteria. The obtained M_g^min--M_DM relations are compared against the baryon-to-DM mass relation M_b--M_DM inferred from the LambdaCDM theory and WMAP4 data. Our aim is to construct realistic initial models of dwarf galaxies (DGs), which take into account the gas self-gravity and can be used as a basis to study the dynamical and chemical evolution of DGs. Rotating equilibria are found by solving numerically the steady-state momentum equation for the gas component in the combined gravitational potential of gas, stars, and DM halo using a forward substitution procedure. We find that for a given M_DM the value of M_g^min depends crucially on the gas temperature T_g, gas spin parameter alpha, degree of non-thermal support sigma_eff, and somewhat on the redshift for galaxy formation z_gf. Depending on the actual values of T_g, alpha, sigma_eff, and z_gf, model galaxies may have M_g^min that are either greater or smaller than M_b. Galaxies with M_DM ga 10^9 M_sun are usually characterized by M_g^min la M_b, implying that SF in such objects is a natural outcome as the required gas mass is consistent with what is available according to the LambdaCDM theory. On the other hand, models with M_DM la 10^9 M_sun are often characterized by M_g^min >> M_b, implying that they need much more gas than available to achieve a state in which SF is allowed. Abridged.
70 - Ken Rice 2017
It has recently been suggested that in the presence of driven turbulence discs may be much less stable against gravitational collapse than their non turbulent analogs, due to stochastic density fluctuations in turbulent flows. This mode of fragmentat ion would be especially important for gas giant planet formation. Here we argue, however, that stochastic density fluctuations due to turbulence do not enhance gravitational instability and disc fragmentation in the long cooling time limit appropriate for planet forming discs. These fluctuations evolve adiabatically and dissipate away by decompression faster than they could collapse. We investigate these issues numerically in 2D via shearing box simulations with driven turbulence and also in 3D with a model of instantaneously applied turbulent velocity kicks. In the former setting turbulent driving leads to additional disc heating that tends to make discs more, rather than less, stable to gravitational instability. In the latter setting, the formation of high density regions due to convergent velocity kicks is found to be quickly followed by decompression, as expected. We therefore conclude that driven turbulence does not promote disc fragmentation in protoplanetary discs and instead tends to make the discs more stable. We also argue that sustaining supersonic turbulence is very difficult in discs that cool slowly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا