ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a first calculation of transverse momentum dependent nucleon observables in dynamical lattice QCD employing non-local operators with staple-shaped, process-dependent Wilson lines. The use of staple-shaped Wilson lines allows us to link lat tice simulations to TMD effects determined from experiment, and in particular to access non-universal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm gear function g_1T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an n_f = 2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.
We present a comprehensive analysis of the electromagnetic form factors of the nucleon from a lattice simulation with two flavors of dynamical O(a)-improved Wilson fermions. A key feature of our calculation is that we make use of an extensive ensembl e of lattice gauge field configurations with four different lattice spacings, multiple volumes, and pion masses down to m_pi ~ 180 MeV. We find that by employing Kelly-inspired parametrizations for the Q^2-dependence of the form factors, we are able to obtain stable fits over our complete ensemble. Dirac and Pauli radii and the anomalous magnetic moments of the nucleon are extracted and results at light quark masses provide evidence for chiral non-analytic behavior in these fundamental observables.
We report on recent results of the QCDSF/UKQCD Collaboration on investigations of baryon structure using configurations generated with N_f=2+1 dynamical flavours of O(a) improved Wilson fermions. With the strange quark mass as an additional dynamical degree of freedom in our simulations we avoid the need for a partially quenched approximation when investigating the properties of particles containing a strange quark, e.g. the hyperons. In particular, we will focus on the nucleon and hyperon axial charges and quark momentum fractions.
We give an update on our ongoing efforts to compute the nucleons form factors and moments of structure functions using Nf=2 flavours of non-perturbatively improved Clover fermions. We focus on new results obtained on gauge configurations where the ps eudo-scalar meson mass is in the range of 170-270 MeV. We will compare our results with various estimates obtained from chiral effective theories since we have some overlap with the quark mass region where results from such theories are believed to be applicable.
A better understanding of transverse momentum (k_T-) dependent quark distributions in a hadron is needed to interpret several experimentally observed large angular asymmetries and to clarify the fundamental role of gauge links in non-abelian gauge th eories. Based on manifestly non-local gauge invariant quark operators we introduce process-independent k_T-distributions and study their properties in lattice QCD. We find that the longitudinal and transverse momentum dependence approximately factorizes, in contrast to the behavior of generalized parton distributions. The resulting quark k_T-probability densities for the nucleon show characteristic dipole deformations due to correlations between intrinsic k_T and the quark or nucleon spin. Our lattice calculations are based on N_f=2+1 mixed action propagators of the LHP collaboration.
We present a comprehensive study of the lowest moments of nucleon generalized parton distributions in N_f=2+1 lattice QCD using domain wall valence quarks and improved staggered sea quarks. Our investigation includes helicity dependent and independen t generalized parton distributions for pion masses as low as 350 MeV and volumes as large as (3.5 fm)^3, for a lattice spacing of 0.124 fm. We use perturbative renormalization at one-loop level with an improvement based on the non-perturbative renormalization factor for the axial vector current, and only connected diagrams are included in the isosinglet channel.
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV.
Moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon are presented from a preliminary analysis of lattice results using pion masses down to 359 MeV. The twist two matrix elements are calculated using a mixed action of domain wall valence quarks and asqtad staggered sea quarks and are renormalized perturbatively. Several observables are extrapolated to the physical limit using chiral perturbation theory. Results are compared with experimental moments of quark distributions and electromagnetic form factors and phenomenologically determined generalized form factors, and the implications on the transverse structure and spin content of the nucleon are discussed.
The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as light as 354 MeV and volumes as large as (3.5 fm)^3. We show that finite volume effects are small for our volumes and that a constrained fit based on finite volume chiral perturbation theory agrees with experiment within 7% statistical errors.
This work presents the first calculation in lattice QCD of three moments of spin-averaged and spin-polarized generalized parton distributions in the proton. It is shown that the slope of the associated generalized form factors decreases significantly as the moment increases, indicating that the transverse size of the light-cone quark distribution decreases as the momentum fraction of the struck parton increases.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا