ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong gravitational lensing magnifies the flux from distant galaxies, allowing us to detect emission lines that would otherwise fall below the detection threshold for medium-resolution spectroscopy. Here we present the detection of temperature-sensi tive oxygen emission lines from three galaxies at 2<z<3.5, which enables us to directly determine the oxygen abundances and thereby double the number of galaxies at z>2 for which this has been possible. The three galaxies have ~10% solar oxygen abundances in agreement with strong emission line diagnostics. Carbon and nitrogen ratios relative to oxygen are sub-solar as expected for young metal-poor galaxies. Two of the galaxies are Lya emitters with rest-frame equivalent widths of 20 A and 40 A, respectively, and their high magnification factors allow us for the first time to gain insight into the physical characteristics of high-redshift Lya emitters. Using constraints from the physical properties of the galaxies, we accurately reproduce their line profiles with radiative transfer models. The models show a relatively small outflow in agreement with the observed small velocity offsets between nebular emission and interstellar absorption lines.
A numerical code for solving various Lyman alpha (Lya) radiative transfer (RT) problems is presented. The code is suitable for an arbitrary, three-dimensional distribution of Lya emissivity, gas temperature, density, and velocity field. Capable of ha ndling Lya RT in an adaptively refined grid-based structure, it enables detailed investigation of the effects of clumpiness of the interstellar (or intergalactic) medium. The code is tested against various geometrically and physically idealized configurations for which analytical solutions exist, and subsequently applied to three Lyman-break galaxies, extracted from high-resolution cosmological simulations at redshift z = 3.6. Proper treatment of the Lya scattering reveals a diversity of surface brightness (SB) and line profiles. Specifically, for a given galaxy the maximum observed SB can vary by an order of magnitude, and the total flux by a factor of 3 - 6, depending on the viewing angle. This may provide an explanation for differences in observed properties of high-redshift galaxies, and in particular a possible physical link between Lyman-break galaxies and regular Lya emitters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا