ترغب بنشر مسار تعليمي؟ اضغط هنا

Current open-domain question answering systems often follow a Retriever-Reader architecture, where the retriever first retrieves relevant passages and the reader then reads the retrieved passages to form an answer. In this paper, we propose a simple and effective passage reranking method, named Reader-guIDEd Reranker (RIDER), which does not involve training and reranks the retrieved passages solely based on the top predictions of the reader before reranking. We show that RIDER, despite its simplicity, achieves 10 to 20 absolute gains in top-1 retrieval accuracy and 1 to 4 Exact Match (EM) gains without refining the retriever or reader. In addition, RIDER, without any training, outperforms state-of-the-art transformer-based supervised rerankers. Remarkably, RIDER achieves 48.3 EM on the Natural Questions dataset and 66.4 EM on the TriviaQA dataset when only 1,024 tokens (7.8 passages on average) are used as the reader input after passage reranking.
We propose Generation-Augmented Retrieval (GAR) for answering open-domain questions, which augments a query through text generation of heuristically discovered relevant contexts without external resources as supervision. We demonstrate that the gener ated contexts substantially enrich the semantics of the queries and GAR with sparse representations (BM25) achieves comparable or better performance than state-of-the-art dense retrieval methods such as DPR. We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy. Moreover, as sparse and dense representations are often complementary, GAR can be easily combined with DPR to achieve even better performance. GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader, and consistently outperforms other retrieval methods when the same generative reader is used.
In this work, we present X-SQL, a new network architecture for the problem of parsing natural language to SQL query. X-SQL proposes to enhance the structural schema representation with the contextual output from BERT-style pre-training model, and tog ether with type information to learn a new schema representation for down-stream tasks. We evaluated X-SQL on the WikiSQL dataset and show its new state-of-the-art performance.
The learning rate warmup heuristic achieves remarkable success in stabilizing training, accelerating convergence and improving generalization for adaptive stochastic optimization algorithms like RMSprop and Adam. Here, we study its mechanism in detai ls. Pursuing the theory behind warmup, we identify a problem of the adaptive learning rate (i.e., it has problematically large variance in the early stage), suggest warmup works as a variance reduction technique, and provide both empirical and theoretical evidence to verify our hypothesis. We further propose RAdam, a new variant of Adam, by introducing a term to rectify the variance of the adaptive learning rate. Extensive experimental results on image classification, language modeling, and neural machine translation verify our intuition and demonstrate the effectiveness and robustness of our proposed method. All implementations are available at: https://github.com/LiyuanLucasLiu/RAdam.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا