ترغب بنشر مسار تعليمي؟ اضغط هنا

Continual learning is the problem of learning and retaining knowledge through time over multiple tasks and environments. Research has primarily focused on the incremental classification setting, where new tasks/classes are added at discrete time inte rvals. Such an offline setting does not evaluate the ability of agents to learn effectively and efficiently, since an agent can perform multiple learning epochs without any time limitation when a task is added. We argue that online continual learning, where data is a single continuous stream without task boundaries, enables evaluating both information retention and online learning efficacy. In online continual learning, each incoming small batch of data is first used for testing and then added to the training set, making the problem truly online. Trained models are later evaluated on historical data to assess information retention. We introduce a new benchmark for online continual visual learning that exhibits large scale and natural distribution shifts. Through a large-scale analysis, we identify critical and previously unobserved phenomena of gradient-based optimization in continual learning, and propose effective strategies for improving gradient-based online continual learning with real data. The source code and dataset are available in: https://github.com/IntelLabs/continuallearning.
Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve thei r effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing deep reinforcement learning to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in deep reinforcement learning. Next, we discuss deep reinforcement learning deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of deep reinforcement learning in data processing and analytics, ranging from data preparation, natural language interface to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using deep reinforcement learning in data processing and analytics.
A widely-used actor-critic reinforcement learning algorithm for continuous control, Deep Deterministic Policy Gradients (DDPG), suffers from the overestimation problem, which can negatively affect the performance. Although the state-of-the-art Twin D elayed Deep Deterministic Policy Gradient (TD3) algorithm mitigates the overestimation issue, it can lead to a large underestimation bias. In this paper, we propose to use the Boltzmann softmax operator for value function estimation in continuous control. We first theoretically analyze the softmax operator in continuous action space. Then, we uncover an important property of the softmax operator in actor-critic algorithms, i.e., it helps to smooth the optimization landscape, which sheds new light on the benefits of the operator. We also design two new algorithms, Softmax Deep Deterministic Policy Gradients (SD2) and Softmax Deep Double Deterministic Policy Gradients (SD3), by building the softmax operator upon single and double estimators, which can effectively improve the overestimation and underestimation bias. We conduct extensive experiments on challenging continuous control tasks, and results show that SD3 outperforms state-of-the-art methods.
Recent years have witnessed a tremendous improvement of deep reinforcement learning. However, a challenging problem is that an agent may suffer from inefficient exploration, particularly for on-policy methods. Previous exploration methods either rely on complex structure to estimate the novelty of states, or incur sensitive hyper-parameters causing instability. We propose an efficient exploration method, Multi-Path Policy Optimization (MPPO), which does not incur high computation cost and ensures stability. MPPO maintains an efficient mechanism that effectively utilizes a population of diverse policies to enable better exploration, especially in sparse environments. We also give a theoretical guarantee of the stable performance. We build our scheme upon two widely-adopted on-policy methods, the Trust-Region Policy Optimization algorithm and Proximal Policy Optimization algorithm. We conduct extensive experiments on several MuJoCo tasks and their sparsified variants to fairly evaluate the proposed method. Results show that MPPO significantly outperforms state-of-the-art exploration methods in terms of both sample efficiency and final performance.
Reinforcement learning algorithms such as the deep deterministic policy gradient algorithm (DDPG) has been widely used in continuous control tasks. However, the model-free DDPG algorithm suffers from high sample complexity. In this paper we consider the deterministic value gradients to improve the sample efficiency of deep reinforcement learning algorithms. Previous works consider deterministic value gradients with the finite horizon, but it is too myopic compared with infinite horizon. We firstly give a theoretical guarantee of the existence of the value gradients in this infinite setting. Based on this theoretical guarantee, we propose a class of the deterministic value gradient algorithm (DVG) with infinite horizon, and different rollout steps of the analytical gradients by the learned model trade off between the variance of the value gradients and the model bias. Furthermore, to better combine the model-based deterministic value gradient estimators with the model-free deterministic policy gradient estimator, we propose the deterministic value-policy gradient (DVPG) algorithm. We finally conduct extensive experiments comparing DVPG with state-of-the-art methods on several standard continuous control benchmarks. Results demonstrate that DVPG substantially outperforms other baselines.
Heuristic algorithms such as simulated annealing, Concorde, and METIS are effective and widely used approaches to find solutions to combinatorial optimization problems. However, they are limited by the high sample complexity required to reach a reaso nable solution from a cold-start. In this paper, we introduce a novel framework to generate better initial solutions for heuristic algorithms using reinforcement learning (RL), named RLHO. We augment the ability of heuristic algorithms to greedily improve upon an existing initial solution generated by RL, and demonstrate novel results where RL is able to leverage the performance of heuristics as a learning signal to generate better initialization. We apply this framework to Proximal Policy Optimization (PPO) and Simulated Annealing (SA). We conduct a series of experiments on the well-known NP-complete bin packing problem, and show that the RLHO method outperforms our baselines. We show that on the bin packing problem, RL can learn to help heuristics perform even better, allowing us to combine the best parts of both approaches.
127 - Ling Pan , Qingpeng Cai , Qi Meng 2019
Value function estimation is an important task in reinforcement learning, i.e., prediction. The Boltzmann softmax operator is a natural value estimator and can provide several benefits. However, it does not satisfy the non-expansion property, and its direct use may fail to converge even in value iteration. In this paper, we propose to update the value function with dynamic Boltzmann softmax (DBS) operator, which has good convergence property in the setting of planning and learning. Experimental results on GridWorld show that the DBS operator enables better estimation of the value function, which rectifies the convergence issue of the softmax operator. Finally, we propose the DBS-DQN algorithm by applying dynamic Boltzmann softmax updates in deep Q-network, which outperforms DQN substantially in 40 out of 49 Atari games.
Model-free reinforcement learning methods such as the Proximal Policy Optimization algorithm (PPO) have successfully applied in complex decision-making problems such as Atari games. However, these methods suffer from high variances and high sample co mplexity. On the other hand, model-based reinforcement learning methods that learn the transition dynamics are more sample efficient, but they often suffer from the bias of the transition estimation. How to make use of both model-based and model-free learning is a central problem in reinforcement learning. In this paper, we present a new technique to address the trade-off between exploration and exploitation, which regards the difference between model-free and model-based estimations as a measure of exploration value. We apply this new technique to the PPO algorithm and arrive at a new policy optimization method, named Policy Optimization with Model-based Explorations (POME). POME uses two components to predict the actions target values: a model-free one estimated by Monte-Carlo sampling and a model-based one which learns a transition model and predicts the value of the next state. POME adds the error of these two target estimations as the additional exploration value for each state-action pair, i.e, encourages the algorithm to explore the states with larger target errors which are hard to estimate. We compare POME with PPO on Atari 2600 games, and it shows that POME outperforms PPO on 33 games out of 49 games.
We study a reinforcement learning setting, where the state transition function is a convex combination of a stochastic continuous function and a deterministic function. Such a setting generalizes the widely-studied stochastic state transition setting , namely the setting of deterministic policy gradient (DPG). We firstly give a simple example to illustrate that the deterministic policy gradient may be infinite under deterministic state transitions, and introduce a theoretical technique to prove the existence of the policy gradient in this generalized setting. Using this technique, we prove that the deterministic policy gradient indeed exists for a certain set of discount factors, and further prove two conditions that guarantee the existence for all discount factors. We then derive a closed form of the policy gradient whenever exists. Furthermore, to overcome the challenge of high sample complexity of DPG in this setting, we propose the Generalized Deterministic Policy Gradient (GDPG) algorithm. The main innovation of the algorithm is a new method of applying model-based techniques to the model-free algorithm, the deep deterministic policy gradient algorithm (DDPG). GDPG optimize the long-term rewards of the model-based augmented MDP subject to a constraint that the long-rewards of the MDP is less than the original one. We finally conduct extensive experiments comparing GDPG with state-of-the-art methods and the direct model-based extension method of DDPG on several standard continuous control benchmarks. Results demonstrate that GDPG substantially outperforms DDPG, the model-based extension of DDPG and other baselines in terms of both convergence and long-term rewards in most environments.
Bike sharing provides an environment-friendly way for traveling and is booming all over the world. Yet, due to the high similarity of user travel patterns, the bike imbalance problem constantly occurs, especially for dockless bike sharing systems, ca using significant impact on service quality and company revenue. Thus, it has become a critical task for bike sharing systems to resolve such imbalance efficiently. In this paper, we propose a novel deep reinforcement learning framework for incentivizing users to rebalance such systems. We model the problem as a Markov decision process and take both spatial and temporal features into consideration. We develop a novel deep reinforcement learning algorithm called Hierarchical Reinforcement Pricing (HRP), which builds upon the Deep Deterministic Policy Gradient algorithm. Different from existing methods that often ignore spatial information and rely heavily on accurate prediction, HRP captures both spatial and temporal dependencies using a divide-and-conquer structure with an embedded localized module. We conduct extensive experiments to evaluate HRP, based on a dataset from Mobike, a major Chinese dockless bike sharing company. Results show that HRP performs close to the 24-timeslot look-ahead optimization, and outperforms state-of-the-art methods in both service level and bike distribution. It also transfers well when applied to unseen areas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا