ترغب بنشر مسار تعليمي؟ اضغط هنا

A complexity-adaptive tree search algorithm is proposed for $boldsymbol{G}_N$-coset codes that implements maximum-likelihood (ML) decoding by using a successive decoding schedule. The average complexity is close to that of the successive cancellation (SC) decoding for practical error rates when applied to polar codes and short Reed-Muller (RM) codes, e.g., block lengths up to $N=128$. By modifying the algorithm to limit the worst-case complexity, one obtains a near-ML decoder for longer RM codes and their subcodes. Unlike other bit-flip decoders, no outer code is needed to terminate decoding. The algorithm can thus be applied to modified $boldsymbol{G}_N$-coset code constructions with dynamic frozen bits. One advantage over sequential decoders is that there is no need to optimize a separate parameter.
A polar-coded transmission (PCT) scheme with joint channel estimation and decoding is proposed for channels with unknown channel state information (CSI). The CSI is estimated via successive cancellation (SC) decoding and the constraints imposed by th e frozen bits. SC list decoding with an outer code improves performance, including resolving a phase ambiguity when using quadrature phase-shift keying (QPSK) and Gray labeling. Simulations with 5G polar codes and QPSK show gains of up to $2$~dB at a frame error rate (FER) of $10^{-4}$ over pilot-assisted transmission for various non-coherent models. Moreover, PCT performs within a few tenths of a dB to a coherent receiver with perfect CSI. For Rayleigh block-fading channels, PCT outperforms an FER upper bound based on random coding and within one dB of a lower bound.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا