ترغب بنشر مسار تعليمي؟ اضغط هنا

Given a graph $G=(V,E)$ and an integer $k ge 1$, a $k$-hop dominating set $D$ of $G$ is a subset of $V$, such that, for every vertex $v in V$, there exists a node $u in D$ whose hop-distance from $v$ is at most $k$. A $k$-hop dominating set of minimu m cardinality is called a minimum $k$-hop dominating set. In this paper, we present linear-time algorithms that find a minimum $k$-hop dominating set in unicyclic and cactus graphs. To achieve this, we show that the $k$-dominating set problem on unicycle graph reduces to the piercing circular arcs problem, and show a linear-time algorithm for piercing sorted circular arcs, which improves the best known $O(nlog n)$-time algorithm.
Given a set $P$ of $n$ red and blue points in the plane, a emph{planar bichromatic spanning tree} of $P$ is a spanning tree of $P$, such that each edge connects between a red and a blue point, and no two edges intersect. In the bottleneck planar bich romatic spanning tree problem, the goal is to find a planar bichromatic spanning tree $T$, such that the length of the longest edge in $T$ is minimized. In this paper, we show that this problem is NP-hard for points in general position. Moreover, we present a polynomial-time $(8sqrt{2})$-approximation algorithm, by showing that any bichromatic spanning tree of bottleneck $lambda$ can be converted to a planar bichromatic spanning tree of bottleneck at most $8sqrt{2}lambda$.
The problem of computing a connected network with minimum interference is a fundamental problem in wireless sensor networks. Several models of interference have been studied in the literature. The most common model is the receiver-centric, in which t he interference of a node $p$ is defined as the number of other nodes whose transmission range covers $p$. In this paper, we study the problem of assigning a transmission range to each sensor, such that the resulting network is strongly connected and the total interference of the network is minimized. For the one-dimensional case, we show how to solve the problem optimally in $O(n^3)$ time. For the two-dimensional case, we show that the problem is NP-complete and give a polynomial-time 2-approximation algorithm for the problem.
A graph $G$ with $n$ vertices is called an outerstring graph if it has an intersection representation of a set of $n$ curves inside a disk such that one endpoint of every curve is attached to the boundary of the disk. Given an outerstring graph repre sentation, the Maximum Independent Set (MIS) problem of the underlying graph can be computed in $O(s^3)$ time, where $s$ is the number of segments in the representation (Keil et al., Comput. Geom., 60:19--25, 2017). If the strings are of constant size (e.g., line segments, L-shapes, etc.), then the algorithm takes $O(n^3)$ time. In this paper, we examine the fine-grained complexity of the MIS problem on some well-known outerstring representations. We show that solving the MIS problem on grounded segment and grounded square-L representations is at least as hard as solving MIS on circle graph representations. Note that no $O(n^{2-delta})$-time algorithm, $delta>0$, is known for the MIS problem on circle graphs. For the grounded string representations where the strings are $y$-monotone simple polygonal paths of constant length with segments at integral coordinates, we solve MIS in $O(n^2)$ time and show this to be the best possible under the strong exponential time hypothesis (SETH). For the intersection graph of $n$ L-shapes in the plane, we give a $(4cdot log OPT)$-approximation algorithm for MIS (where $OPT$ denotes the size of an optimal solution), improving the previously best-known $(4cdot log n)$-approximation algorithm of Biedl and Derka (WADS 2017).
For any constants $dge 1$, $epsilon >0$, $t>1$, and any $n$-point set $Psubsetmathbb{R}^d$, we show that there is a geometric graph $G=(P,E)$ having $O(nlog^2 nloglog n)$ edges with the following property: For any $Fsubseteq P$, there exists $F^+sups eteq F$, $|F^+| le (1+epsilon)|F|$ such that, for any pair $p,qin Psetminus F^+$, the graph $G-F$ contains a path from $p$ to $q$ whose (Euclidean) length is at most $t$ times the Euclidean distance between $p$ and $q$. In the terminology of robust spanners (Bose et al, SICOMP, 42(4):1720--1736, 2013) the graph $G$ is a $(1+epsilon)k$-robust $t$-spanner of $P$. This construction is sparser than the recent constructions of Buchin, Ol`ah, and Har-Peled (arXiv:1811.06898) who prove the existence of $(1+epsilon)k$-robust $t$-spanners with $nlog^{O(d)} n$ edges.
In their seminal work, Danzer (1956, 1986) and Stach{o} (1981) established that every set of pairwise intersecting disks in the plane can be stabbed by four points. However, both these proofs are non-constructive, at least in the sense that they do n ot seem to imply an efficient algorithm for finding the stabbing points, given such a set of disks $D$. Recently, Har-Peled etal (2018) presented a relatively simple linear-time algorithm for finding five points that stab $D$. We present an alternative proof (and the first in English) to the assertion that four points are sufficient to stab $D$. Moreover, our proof is constructive and provides a simple linear-time algorithm for finding the stabbing points. As a warmup, we present a nearly-trivial liner-time algorithm with an elementary proof for finding five points that stab $D$.
Given $n$ pairs of points, $mathcal{S} = {{p_1, q_1}, {p_2, q_2}, dots, {p_n, q_n}}$, in some metric space, we study the problem of two-coloring the points within each pair, red and blue, to optimize the cost of a pair of node-disjoint networks, one over the red points and one over the blue points. In this paper we consider our network structures to be spanning trees, traveling salesman tours or matchings. We consider several different weight functions computed over the network structures induced, as well as several different objective functions. We show that some of these problems are NP-hard, and provide constant factor approximation algorithms in all cases.
We prove a geometric version of the graph separator theorem for the unit disk intersection graph: for any set of $n$ unit disks in the plane there exists a line $ell$ such that $ell$ intersects at most $O(sqrt{(m+n)log{n}})$ disks and each of the hal fplanes determined by $ell$ contains at most $2n/3$ unit disks from the set, where $m$ is the number of intersecting pairs of disks. We also show that an axis-parallel line intersecting $O(sqrt{m+n})$ disks exists, but each halfplane may contain up to $4n/5$ disks. We give an almost tight lower bound (up to sublogarithmic factors) for our approach, and also show that no line-separator of sublinear size in $n$ exists when we look at disks of arbitrary radii, even when $m=0$. Proofs are constructive and suggest simple algorithms that run in linear time. Experimental evaluation has also been conducted, which shows that for random instances our method outperforms the method by Fox and Pach (whose separator has size $O(sqrt{m})$).
A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is $x$- and $y$-monotone. Angle-monotone graphs are $sqrt 2$-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmun dsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-$theta_6$-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex $s$ to any vertex $t$ whose length is within $1 + sqrt 2$ times the Euclidean distance from $s$ to $t$. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.
A power assignment is an assignment of transmission power to each of the wireless nodes of a wireless network, so that the induced graph satisfies some desired properties. The cost of a power assignment is the sum of the assigned powers. In this pape r, we consider the dual power assignment problem, in which each wireless node is assigned a high- or low-power level, so that the induced graph is strongly connected and the cost of the assignment is minimized. We improve the best known approximation ratio from $frac{pi^2}{6}-frac{1}{36}+epsilonthickapprox 1.617$ to $frac{11}{7}thickapprox 1.571$. Moreover, we show that the algorithm of Khuller et al. for the strongly connected spanning subgraph problem, which achieves an approximation ratio of $1.61$, is $1.522$-approximation algorithm for symmetric directed graphs. The innovation of this paper is in achieving these results via utilizing interesting properties for the existence of a second Hamiltonian cycle.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا