ترغب بنشر مسار تعليمي؟ اضغط هنا

Using a filter in the GROWTH Marshal based on color and the amplitude and the timescale of variability, we have identified 372 objects as known or candidate cataclysmic variables (CVs) during the second year of operation of the Zwicky Transient Facil ity (ZTF). From the available difference imaging data, we found that 93 are previously confirmed CVs, and 279 are strong candidates. Spectra of four of the candidates confirm them as CVs by the presence of Balmer emission lines, while one of the four has prominent HeII lines indicative of containing a magnetic white dwarf. Gaia EDR3 parallaxes are available for 154 of these systems, resulting in distances from 108-2096 pc and absolute magnitudes in the range of 7.5-15.0, with the largest number of candidates between 10.5-12.5. The total numbers are 21% higher than from the previous year of the survey with a greater number of distances available but a smaller percentage of systems close to the Galactic plane. Comparison of these findings with a machine learning method of searching all the light curves reveals large differences in each dataset related to the parameters involved in the search process.
217 - Paula Szkody 2021
Following the pulsation spectrum of a white dwarf through the heating and cooling involved in a dwarf nova outburst cycle provides a unique view of the changes to convective driving that take place on timescales of months versus millenia for non-accr eting white dwarfs. In 2019 January the dwarf nova V386 Ser (one of a small number containing an accreting, pulsating white dwarf), underwent a large amplitude outburst. Hubble Space Telescope ultraviolet spectra were obtained 7 and 13 months after outburst along with optical ground-based photometry during this interval and high-speed photometry at 5.5 and 17 months after outburst. The resulting spectral and pulsational analysis shows a cooling of the white dwarf from 21,020 K to 18,750 K (with a gravity log(g) = 8.1) between the two UV observations, along with the presence of strong pulsations evident in both UV and optical at a much shorter period after outburst than at quiescence. The pulsation periods consistently lengthened during the year following outburst, in agreement with pulsation theory. However, it remains to be seen if the behavior at longer times past outburst will mimic the unusual non-monotonic cooling and long periods evident in the similar system GW Lib.
Portions of the Kepler K2 Short Cadence light curve of the dwarf nova (DN) TW Vir at quiescence are investigated using light curve modeling. The light curve was separated into 24 sections, each with a data length of $sim,$0.93,d, comprising 4 section s before and 20 after a superoutburst (SO). Due to the morphological differences, the quiescent orbital modulation is classified into three types. Using a fixed disk radius and the two component stellar parameters, all 24 synthetic disk models from the sections show a consistent configuration, consisting of a disk and two hotspots: one at the vertical side of the edge of the disk and the other one on the surface of the disk. Before the SO, the disk and a ringlike surface-hotspot are suddenly enhanced, triggering a precursor and then SO. At the end of the quiescent period following the SO and before the first normal outburst, the edge-hotspot becomes hotter, while the surface-hotspot switches into a ``coolspot with a coverage of nearly one-half of the disk surface. During quiescence, the surface-hotspot is always located at the outer part of the disk with a constant radial width. A flat radial temperature distribution of the disk is found and appears flatter when approaching the outburst. Like many U,Gem-type DN with orbital periods of 3-5,hr, the mass transfer rate is significantly lower than the predictions of the standard/revised models of CV evolution.
The Kepler spacecraft observed a total of only four AM Herculis cataclysmic variable stars during its lifetime. We analyze the short-cadence K2 light curve of one of those systems, Tau 4 (RX J0502.8+1624), which underwent a serendipitous jump from a low-accretion state into a high state during the final days of the observation. Apart from one brief flare, there was no evidence of accretion during the 70 d of observations of the low state. As Tau 4 transitioned into a high state, the resumption of accretion was very gradual, taking approximately six days (~90 binary orbits). We supplement Tau 4s K2 light curve with time-resolved spectroscopy obtained in both high and low states of accretion. High-excitation lines, such as He II 468.6 nm, were extraordinarily weak, even when the system was actively accreting. This strongly suggests the absence of an accretion shock, placing Tau 4 in the bombardment regime predicted for AM Herculis systems with low accretion rates. In both the high-state and low-state spectra, Zeeman absorption features from the white dwarfs photosphere are present and reveal a surface-averaged field strength of $15pm2$ MG. Remarkably, the high-state spectra also show Zeeman-split emission lines produced in a region with a field strength of $12pm1$ MG. Zeeman emission has not been previously reported in an AM Herculis system, and we propose that the phenomenon is caused by a temperature inversion in the WDs atmosphere near the accretion region.
We present spectroscopy of stars in the immediate vicinity of the dwarf nova (DN) KZ Gem to confirm its identification, which had been ambiguous in the literature. Analysis of 73 radial velocities spanning from 2014 to 2019 provides a high-precision orbital period of 0.2224628(2),d ($sim5.34$,hr) and shows KZ,Gem to be a double-lined DN. Time series photometry taken from 2016 to 2018 shows a variable double-hump modulation with a full amplitude of $sim0.3$,mag, along with five Gaussian-like transient events lasting $sim30$,min or more. Using the light curve code XRBinary and nonlinear fitting code NMfit, we obtain an optimized binary model of the dwarf nova (DN) KZ Gem, from time series photometry, consisting of a Roche-lobe-filling K type dwarf with a mass transfer rate of $2.7,-,7.9times10^{-10},{rm M}_{odot},{rm yr}^{-1}$ to a large, cool and thick disk surrounding a white dwarf, in an orbit with an inclination of $51^{circ}.6(pm1^{circ}.4)$. Two hotspots on the disk are demonstrated to cause the observed variations in the ellipsoidal modulations from the secondary star. This physical model is compatible with the Gaia distance of KZ,Gem.
Using selection criteria based on amplitude, time and color, we have identified 329 objects as known or candidate cataclysmic variable (CVs) during the first year of testing and operation of the Zwicky Transient Facility (ZTF). Of these, 90 are previ ously confirmed CVs, 218 are strong candidates based on the shape and color of their light curves obtained during 3-562 days of observations, and the remaining 21 are possible CVs but with too few data points to be listed as good candidates. Almost half the strong candidates are within 10 deg of the galactic plane, in contrast to most other large surveys which have avoided crowded fields. The available Gaia parallaxes are consistent with sampling the low mass transfer CVs, as predicted by population models. Our followup spectra have confirmed Balmer/helium emission lines in 27 objects, with four showing high excitation HeII emission, including candidates for an AM CVn, a polar and an intermediate polar. Our results demonstrate that a complete survey of the galactic plane is needed to accomplish an accurate determination of the number of CVs existing in the Milky Way.
We propose a combination of a modified Wide-Fast-Deep survey, a mini-survey of the South Celestial Pole, and a Deep Drilling-style survey to produce a 3-D map of the Magellanic System and to provide a detailed census of the transient and variable pop ulations in the Clouds. We support modifying the Wide-Fast-Deep survey to cover the declination range $-72.25deg<{rm Dec}<12.4deg$ and the Galactic latitude range $|b|>15deg$, as proposed in a separate white paper. We additionally propose a mini-survey covering the 950$deg^2$ with ${rm Dec} < -72.25$ in $ugriz$ to the standard LSST single-exposure depth and with 40 visits per filter per field. Finally, we propose a mini-survey covering $sim100 deg^2$ of the main bodies of the Clouds with twelve total pointings, 2000 total visits per field, and shorter exposure time.
We used the light curve code XRBinary to model the quiescent K2 light curves of three low-inclination cataclysmic variables (CVs): 1RXS,J0632+2536 (J0632+2536), RZ,Leo, TW,Vir and the pre-CV WD,1144+011. Optimized light curve models were obtained usi ng a nonlinear fitting code NMfit and visualized by Phoebe 2.0. The disk model of J0632+2536 shows that one hotspot at the edge of the disk is enough to describe its light curve, while the other two dwarf nova (DN): RZ,Leo and TW,Vir require two hotspots. A typical pre-CV model with a weak irradiation effect for WD,1144+011 can explain its single-hump modulation, and the newly observed spectrum confirms its previous classification. The synthetic analyses for the DN clearly indicate that phase zero of the double-hump modulations occurs around the secondary minimum and the primary hump is mainly caused by the hotspot at the edge of the disk. The quiescent disk has a flat temperature distribution with a power index of $sim0.11$. The disk model of RZ,Leo implies a truncated disk, supporting its previously speculated classification as an intermediate polar (IP). Except for the IP model of RZ,Leo, which lacks a component related to the inferred accretion curtain, the models of J0632+2536, TW,Vir and WD,1144+011 are consistent with results from the Gaia mission. The derived masses and radii of the secondaries of the three DN are consistent with the semi-empirical relations for CV donor stars, while their effective temperatures are higher than the predictions. Irradiation of the donor stars is investigated to explain this discrepancy.
We present a long-term light curve of the precataclysmic variable (CV) V1082 Sgr obtained by the K2-mission over the course of 81 days. We analyze the entire complex light curve as well as explore several sections in detail with a sliding periodogram . The long dataset allows the first detection of the orbital period in the light curve, as well as the confirmation of cyclical variability on a longer timescale of about a month. A portion of the light curve in deep minimum reveals a clean, near-sinusoidal variability attributed to the rotation of the spotted surface of the donor star. We model that portion of the light curve assuming that the donor star grossly under-fills its Roche lobe, has cool spots similar to a chromospherically active, slightly evolved early K-star, and might be irradiated by the X-ray beam from the magnetically accreting white dwarf. The fast variability of the object in the active phases resembles the light curves of magnetic CVs (polars).
Spectra of 38 candidate or known cataclysmic variables are presented. Most are candidate dwarf novae or systems containing possible highly magnetic white dwarfs, while a few (KR Aur, LS Peg, V380 Oph and V694 Mon) are previously known objects caught in unusual states. Individual spectra are used to confirm a dwarf nova nature or other classification while radial velocities of 15 systems provide orbital periods and velocity amplitudes that aid in determining the nature of the objects. Our results substantiate a polar nature for four objects, find an eclipsing SW Sex star below the period gap, another as a likely intermediate polar, as well as two dwarf novae with periods in the middle of the gap.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا