ترغب بنشر مسار تعليمي؟ اضغط هنا

Followup Observations of SDSS and CRTS Candidate Cataclysmic Variables II

122   0   0.0 ( 0 )
 نشر من قبل Paula Szkody
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectra of 38 candidate or known cataclysmic variables are presented. Most are candidate dwarf novae or systems containing possible highly magnetic white dwarfs, while a few (KR Aur, LS Peg, V380 Oph and V694 Mon) are previously known objects caught in unusual states. Individual spectra are used to confirm a dwarf nova nature or other classification while radial velocities of 15 systems provide orbital periods and velocity amplitudes that aid in determining the nature of the objects. Our results substantiate a polar nature for four objects, find an eclipsing SW Sex star below the period gap, another as a likely intermediate polar, as well as two dwarf novae with periods in the middle of the gap.

قيم البحث

اقرأ أيضاً

We report on XMM-Newton and optical results for 6 cataclysmic variables that were selected from Sloan Digital Sky Survey spectra because they showed strong HeII emission lines, indicative of being candidates for containing white dwarfs with strong ma gnetic fields. While high X-ray background rates prevented optimum results, we are able to confirm SDSSJ233325.92+152222.1 as an intermediate polar from its strong pulse signature at 21 min and its obscured hard X-ray spectrum. Ground-based circular polarization and photometric observations were also able to confirm SDSSJ142256.31-022108.1 as a polar with a period near 4 hr. Photometry of SDSSJ083751.00+383012.5 and SDSSJ093214.82+495054.7 solidifies the orbital period of the former as 3.18 hrs and confirms the latter as a high inclination system with deep eclipses.
The NSFs Karl G. Jansky Very Large Array (VLA) is used to observe 122 magnetic cataclysmic variables (MCVs) during three observing semesters (13B, 15A, and 18A). We report radio detections of 33 stars with fluxes in the range 6--8031 uJy. Twenty-eigh t stars are new radio sources, increasing the number of radio detected MCVs to more that 40. A surprising result is that about three-quarters (24 of 33 stars) of the detections show highly circularly polarized radio emission of short duration, which is characteristic of electron cyclotron maser emission. We argue that this emission originates from the lower corona of the donor star, and not from a region between the two stars. Maser emission enables a more direct estimate of the mean coronal magnetic field of the donor star, which we estimate to be 1--4 kG assuming a magnetic filling factor of 50%. A two-sample Kolmogorov-Smirnov test supports the conclusion that the distribution function of radio detected MCVs with orbital periods between 1.5-5 hours is similar to that of all MCVs. This result implies that rapidly-rotating (Pspin < 10 days), fully convective stars can sustain strong magnetic dynamos. These results support the model of Taam & Spruit (1989) that the change in angular momentum loss across the fully convective boundary at Porb = ~3 hours is due to a change in the magnetic field structure of the donor star from a low-order to high-order multipolar field.
The first full year of operation following the commissioning year of the Sloan Digital Sky Survey has revealed a wide variety of newly discovered cataclysmic variables. We show the SDSS spectra of forty-two cataclysmic variables observed in 2002, of which thirty-five are new classifications, four are known dwarf novae (CT Hya, RZ Leo, T Leo and BZ UMa), one is a known CV identified from a previous quasar survey (Aqr1) and two are known ROSAT or FIRST discovered CVs (RX J09445+0357, FIRST J102347.6+003841). The SDSS positions, colors and spectra of all forty-two systems are presented. In addition, the results of follow-up studies of several of these objects identify the orbital periods, velocity curves and polarization that provide the system geometry and accretion properties. While most of the SDSS discovered systems are faint (>18th mag) with low accretion rates (as implied from their spectral characteristics), there are also a few bright objects which may have escaped previous surveys due to changes in the mass transfer rate.
The majority of cataclysmic variables are predicted to be post-period minimum systems with degenerate donor stars, the period bouncers. Owing to their intrinsic faintness, however, only a handful of these systems have so far been securely identified. We want to study the X-ray properties of two eclipsing period bouncers, OV Bootis and SDSS J103533.02+055158.3, that were selected for this study due to their proximity to Earth. We have obtained XMM-Newton phase-resolved X-ray and ultraviolet observations of the two objects for spectral and timing analysis. Owing to a recent dwarf nova outburst OV Boo was much brighter than SDSS J103533.02+055158.3 at X-ray and ultraviolet wavelengths and the eclipse could be studied in some detail. An updated eclipse ephemeris was derived. The X-rays were shown to originate close to the white dwarf, the boundary layer, with significant absorption affecting its spectrum. There was no absorption in SDSS J103533.02+055158.3, despite being observed at the same inclination indicating different shapes of the disk and the disk rim. The white-dwarf temperature was re-determined for both objects: the white dwarf in OV Boo was still hot (23,000 K) five months after a dwarf nova outburst, and the white dwarf in SDSS J103533.02+055158.3 hotter than assumed previously (Teff = 11,500 K). All three cataclysmic variables with degenerate donors studied so far in X-rays, including SDSS J121209.31+013627.7, were clearly discovered in X-rays and revealed mass accretion rates dot(M) >= 8 x 10^(-15) Msun/ yr. If their X-ray behavior is representative of the subpopulation of period bouncers, the all-sky X-ray surveys with eROSITA together with comprehensive follow-up will uncover new objects in sufficient number to address the remaining questions concerning late-stage cataclysmic variable evolution.
This paper completes the series of cataclysmic variables (CVs) identified from the Sloan Digital Sky Survey I/II. The coordinates, magnitudes and spectra of 33 CVs are presented. Among the 33 are eight systems known previous to SDSS (CT Ser, DO Leo, HK Leo, IR Com, V849 Her, V405 Peg, PG1230+226 and HS0943+1404), as well as nine objects recently found through various photometric surveys. Among the systems identified since the SDSS are two polar candidates, two intermediate polar candidates and one candidate for containing a pulsating white dwarf. Our followup data have confirmed a polar candidate from Paper VII and determined tentative periods for three of the newly identified CVs. A complete summary table of the 285 CVs with spectra from SDSS I/II is presented as well as a link to an online table of all known CVs from both photometry and spectroscopy that will continue to be updated as future data appear.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا