ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze the multifrequency behavior of the quasar 3C 454.3 during three prominent gamma-ray outbursts: 2009 Autumn, 2010 Spring, and 2010 Autumn. The data reveal a repeating pattern, including a triple flare structure, in the properties of each ga mma-ray outburst, which implies similar mechanism(s) and location for all three events. The multi-frequency behavior indicates that the lower frequency events are co-spatial with the gamma-ray outbursts, although the gamma-ray emission varies on the shortest timescales. We determine that the variability from UV to IR wavelengths during an outburst results from a single synchrotron component whose properties do not change significantly over the different outbursts. Despite a general increase in the degree of optical linear polarization during an outburst, the polarization drops significantly at the peak of the gamma-ray event, which suggests that both shocks and turbulent processes are involved. We detect two disturbances (knots) with superluminal apparent speeds in the parsec-scale jet associated with the outbursts in 2009 Autumn and 2010 Autumn. The kinematic properties of the knots can explain the difference in amplitudes of the gamma-ray events, while their millimeter-wave polarization is related to the optical polarization during the outbursts. We interpret the multi-frequency behavior within models involving either a system of standing conical shocks or magnetic reconnection events located in the parsec-scale millimeter-wave core of the jet. We argue that gamma-ray outbursts with variability timescales as short as ~ 3 hr can occur on parsec scales if flares take place in localized regions such as turbulent cells.
Recent theoretical work has suggested that Lyman-alpha nebulae could be substantially polarized in the Lyman-alpha emission line, depending on the geometry, kinematics, and powering mechanism at work. Polarization observations can therefore provide a useful constraint on the source of ionization in these systems. In this Letter, we present the first Lyman-alpha polarization measurements for a giant Lyman-alpha nebula at z~2.656. We do not detect any significant linear polarization of the Lyman-alpha emission: P_{Lyman-alpha}=2.6+/-2.8% (corrected for statistical bias) within a single large aperture. The current data also do not show evidence for the radial polarization gradient predicted by some theoretical models. These results rule out singly scattered Lyman-alpha (e.g., from the nearby AGN) and may be inconsistent with some models of backscattering in a spherical outflow. However, the effects of seeing, diminished signal-to-noise ratio, and angle averaging within radial bins make it difficult to put strong constraints on the radial polarization profile. The current constraints may be consistent with higher density outflow models, spherically symmetric infall models, photoionization by star formation within the nebula or the nearby AGN, resonant scattering, or non-spherically symmetric cold accretion (i.e., along filaments). Higher signal-to-noise ratio data probing to higher spatial resolution will allow us to harness the full diagnostic power of polarization observations in distinguishing between theoretical models of giant Lyman-alpha nebulae.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا