ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new approach to calculate the particle distribution function about relativistic shocks including synchrotron losses using the method of lines with an explicit finite difference scheme. A steady, continuous, one dimensional plasma flow is considered to model thick (modified) shocks, leading to a calculation in three dimensions plus time, the former three being momentum, pitch angle and position. The method accurately reproduces the expected power law behaviour in momentum at the shock for upstream flow speeds ranging from 0.1c to 0.995c (1 < Gamma < 10). It also reproduces approximate analytical results for the synchrotron cutoff shape for a non-relativistic shock, demonstrating that the loss process is accurately represented. The algorithm has been implemented as a hybrid OpenMP--MPI parallel algorithm to make efficient use of SMP cluster architectures and scales well up to many hundreds of CPUs.
We investigate the acceleration and simultaneous radiative losses of electrons in the vicinity of relativistic shocks. Particles undergo pitch angle diffusion, gaining energy as they cross the shock by the Fermi mechanism and also emitting synchrotro n radiation in the ambient magnetic field. A semi-analytic approach is developed which allows us to consider the behaviour of the shape of the spectral cut-off and the variation of that cut-off with the particle pitch angle. The implications for the synchrotron emission of relativistic jets, such as those in gamma ray burst sources and blazars, are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا