ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative losses and cut-offs of energetic particles at relativistic shocks

42   0   0.0 ( 0 )
 نشر من قبل Paul Dempsey
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the acceleration and simultaneous radiative losses of electrons in the vicinity of relativistic shocks. Particles undergo pitch angle diffusion, gaining energy as they cross the shock by the Fermi mechanism and also emitting synchrotron radiation in the ambient magnetic field. A semi-analytic approach is developed which allows us to consider the behaviour of the shape of the spectral cut-off and the variation of that cut-off with the particle pitch angle. The implications for the synchrotron emission of relativistic jets, such as those in gamma ray burst sources and blazars, are discussed.

قيم البحث

اقرأ أيضاً

In-situ spacecraft observations recently suggested that the transport of energetic particles accelerated at heliospheric shocks can be anomalous, i.e. the mean square displacement can grow non-linearly in time. In particular, a new analysis technique has permitted the study of particle transport properties from energetic particle time profiles upstream of interplanetary shocks. Indeed, the time/spatial power laws of the differential intensity upstream of several shocks are indicative of superdiffusion. A complete determination of the key parameters of superdiffusive transport comprises the power-law index, the superdiffusion coefficient, the related transition scale at which the energetic particle profiles turn to decay as power laws, and the energy spectral index of the shock accelerated particles. Assuming large-scale spatial homogeneity of the background plasma, the power-law behaviour can been derived from both a (microscopic) propagator formalism and a (macroscopic) fractional transport equation. We compare the two approaches and find a relation between the diffusion coefficients used in the two formalisms. Based on the assumption of superdiffusive transport, we quantitatively derive these parameters by studying energetic particle profiles observed by the Ulysses and Voyager 2 spacecraft upstream of shocks in the heliosphere, for which a superdiffusive particle transport has previously been observed. Further, we have jointly studied the electron energy spectra, comparing the values of the spectral indices observed with those predicted by the standard diffusive shock acceleration theory and by a model based on superdiffusive transport. For a number of interplanetary shocks and for the solar wind termination shock, for the first time we obtain the anomalous diffusion constants and the scale at which the probability of particle free paths changes to a power-law...
88 - Martin Lemoine 2019
In this third paper of a series, we discuss the physics of the population of accelerated particles in the precursor of an unmagnetized, relativistic collisionless pair shock. In particular, we provide a theoretical estimate of their scattering length $l_{scatt}(p)$ in the self-generated electromagnetic turbulence, as well as an estimate of their distribution function. We obtain $l_{scatt}(p) simeq (gamma_p /epsilon_B)(p/gamma_{infty} mc)^2 (c/omega_p)$, with p the particle momentum in the rest frame of the shock front, $epsilon_B$ the strength parameter of the microturbulence, $gamma_p$ the Lorentz factor of the background plasma relative to the shock front and $gamma_{infty}$ its asymptotic value outside the precursor. We compare this scattering length to large-scale PIC simulations and find good agreement for the various dependencies.
We have investigated particle acceleration and emission from shocks and shear flows associated with an unmagnetized relativistic jet plasma propagating into an unmagnetized ambient plasma. Strong electro-magnetic fields are generated in the jet shock via the filamentation (Weibel) instability. Shock field strength and structure depend on plasma composition (($e^{pm}$ or $e^-$- $p^+$ plasmas) and Lorentz factor. In the velocity shear between jet and ambient plasmas, strong AC ($e^{pm}$ plasmas) or DC ($e^-$- $p^+$ plasmas) magnetic fields are generated via the kinetic Kelvin-Helmholtz instability (kKHI), and the magnetic field structure also depends on the jet Lorentz factor. We have calculated, self-consistently, the radiation from electrons accelerated in shock generated magnetic fields. The spectra depend on the jets initial Lorentz factor and temperature via the resulting particle acceleration and magnetic field generation. Our ongoing Global jet simulations containing shocks and velocity shears will provide us with the ability to calculate and model the complex time evolution and/or spectral structure observed from gamma-ray bursts, AGN jets, and supernova remnants.
We present numerical modelling of particle acceleration at coronal shocks propagating through a streamer-like magnetic field by solving the Parker transport equation with spatial diffusion both along and across the magnetic field. We show that the lo cation on the shock where the high-energy particle intensity is the largest, depends on the energy of the particles and on time. The acceleration of particles to more than 100 MeV mainly occurs in the shock-streamer interaction region, due to perpendicular shock geometry and the trapping effect of closed magnetic fields. A comparison of the particle spectra to that in a radial magnetic field shows that the intensity at 100 MeV (200 MeV) is enhanced by more than one order (two orders) of magnitude. This indicates that the streamer-like magnetic field can be an important factor in producing large solar energetic particle events. We also show that the energy spectrum integrated over the simulation domain consists of two different power laws. Further analysis suggests that it may be a mixture of two distinct populations accelerated in the streamer and open field regions, where the acceleration rate differs substantially. Our calculations also show that the particle spectra are affected considerably by a number of parameters, such as the streamer tilt angle, particle spatial diffusion coefficient, and shock compression ratio. While the low-energy spectra agree well with standard diffusive shock acceleration theory, the break energy ranges from $sim$1 MeV to $sim$90 MeV and the high-energy spectra can extend to $sim$1 GeV with a slope of $sim$2-3.
We study periods of elevated energetic particle intensities observed by STEREO-A when the partial pressure exerted by energetic ($geq$83 keV) protons ($P_{EP}$) is larger than the pressure exerted by the interplanetary magnetic field ($P_{B}$). In th e majority of cases, these periods are associated with the passage of interplanetary shocks. Periods when $P_{EP}$ exceeds $P_{B}$ by more than one order of magnitude are observed in the upstream region of fast interplanetary shocks where depressed magnetic field regions coincide with increases of the energetic particle intensities. When solar wind parameters are available, $P_{EP}$ also exceeds the pressure exerted by the solar wind thermal population ($P_{TH}$). Prolonged periods ($>$12 h) with both $P_{EP}$$>$$P_{B}$ and $P_{EP}$$>$$P_{TH}$ may also occur when energetic particles accelerated by an approaching shock encounter a region well-upstream of the shock characterized by low magnetic field magnitude and tenuous solar wind density. Quasi-exponential increases of the sum $P_{SUM}$=$P_{B}$+$P_{TH}$+$P_{EP}$ are observed in the immediate upstream region of the shocks regardless of individual changes in $P_{EP}$, $P_{B}$ and $P_{TH}$, indicating a coupling between $P_{EP}$ and the pressure of the background medium characterized by $P_{B}$ and $P_{TH}$. The quasi-exponential increase of $P_{SUM}$ implies a convected exponential radial gradient $partial{P_{SUM}}/partial{r}$$>$0 that results in an outward force applied to the plasma upstream of the shock. This force can be maintained by the mobile energetic particles streaming upstream of the shocks that, in the most intense events, drive electric currents able to generate diamagnetic cavities and depressed solar wind density regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا