ترغب بنشر مسار تعليمي؟ اضغط هنا

We address the stability of the surface phases that occur on the C-side of 3C-SiC($bar{1} bar{1} bar{1}$) at the onset of graphene formation. In this growth range, experimental reports reveal a coexistence of several surface phases. This coexistence can be explained by a Si-rich model for the unknown (3$times$3) reconstruction, the known (2$times$2)$_{C}$ adatom phase, and the graphene covered (2$times$2)$_{C}$ phase. By constructing an $ab$ $initio$ surface phase diagram using a van der Waals corrected density functional, we show that the formation of a well defined interface structure like the buffer-layer on the Si side is blocked by Si-rich surface reconstructions.
We follow the evolution of the Ionization Potential (IP) for the paradigmatic quasi-one-dimensional trans-acetylene family of conjugated molecules, from short to long oligomers and to the infinite polymer trans-poly-acetylene (TPA). Our results for s hort oligomers are very close to experimental available data. We find that the IP varies with oligomer length and converges to the given value for TPA with a smooth, coupled inverse-length-exponential behavior. Our prediction is based on an internally-consistent scheme to adjust the exchange mixing parameter $alpha$ of the PBEh hybrid density functional, so as to obtain a description of the electronic structure consistent with the quasiparticle approximation for the IP. This is achieved by demanding that the corresponding quasiparticle correction, in the GW@PBEh approximation, vanishes for the IP when evaluated at PBEh($alpha^{ic}$). We find that $alpha^{ic}$ is also system-dependent and converges with increasing oligomer length, allowing to capture the dependence of IP and other electronic properties.
First-principles surface phase diagrams reveal that epitaxial monolayer graphene films on the Si side of 3C-SiC(111) can exist as thermodynamically stable phases in a narrow range of experimentally controllable conditions, defining a path to the high est-quality graphene films. Our calculations are based on a van der Waals corrected density functional. The full, experimentally observed (6 sqrt(3)x 6 sqrt(3))-R30 supercells for zero- to trilayer graphene are essential to describe the correct interface geometries and the relative stability of surface phases and possible defects.
By means of quasiparticle-energy calculations in the G0W0 approach, we show for the prototypical insulator/semiconductor system NaCl/Ge(001) that polarization effects at the interfaces noticeably affect the excitation spectrum of molecules adsorbed o n the surface of the NaCl films. The magnitude of the effect can be controlled by varying the thickness of the film, offering new opportunities for tuning electronic excitations in e.g. molecular electronics or quantum transport. Polarization effects are visible even for the excitation spectrum of the NaCl films themselves, which has important implications for the interpretation of surface science experiments for the characterization of insulator surfaces.
In the context of photoelectron spectroscopy, the $GW$ approach has developed into the method of choice for computing excitation spectra of weakly correlated bulk systems and their surfaces. To employ the established computational schemes that have b een developed for three-dimensional crystals, two-dimensional systems are typically treated in the repeated-slab approach. In this work we critically examine this approach and identify three important aspects for which the treatment of long-range screening in two dimensions differs from the bulk: (1) anisotropy of the macroscopic screening (2) $mathbf k$-point sampling parallel to the surface (3) periodic repetition and slab-slab interaction. For prototypical semiconductor (silicon) and ionic (NaCl) thin films we quantify the individual contributions of points (1) to (3) and develop robust and efficient correction schemes derived from the classic theory of dielectric screening.
To better understand the electronic and chemical properties of wide-gap oxide surfaces at the atomic scale, experimental work has focused on epitaxial films on metal substrates. Recent findings show that these films are considerably thinner than prev iously thought. This raises doubts about the transferability of the results to surface properties of thicker films and bulk crystals. By means of density-functional theory and approximate GW corrections for the electronic spectra we demonstrate for three characteristic wide-gap oxides (silica, alumina, and hafnia) the influence of the substrate and highlight critical differences between the ultrathin films and surfaces of bulk materials. Our results imply that monolayer-thin oxide films have rather unique properties.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا