ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first results of an MMT/Hectospec campaign to measure the kinematics of globular clusters (GCs) around M49 -- the brightest galaxy in the Virgo galaxy cluster, which dominates the Virgo B subcluster. The data include kinematic tracers beyond 95 kpc (~5.2 effective radii) for M49 for the first time, enabling us to achieve three key insights reported here. First, beyond ~20-30 (~100-150 kpc), the GC kinematics sampled along the minor photometric axis of M49 become increasingly hotter, indicating a transition from GCs related to M49 to those representing the Virgo B intra-cluster medium. Second, there is an anomaly in the line-of-sight radial velocity dispersion ($sigma_{r,los}$) profile in an annulus ~10-15 (~50-90 kpc) from M49 in which the kinematics cool by $Delta sigma_{r,los}~150$ km s$^{-1}$ relative to those in- or outward. The kinematic fingerprint of a previous accretion event is hinted at in projected phase-space, and we isolate GCs that both give rise to this feature, and are spatially co-located with two prominent stellar shells in the halo of M49. Third, we find a subsample of GCs with velocities representative of the dwarf galaxy VCC1249 that is currently interacting with M49. The spatial distribution of these GCs closely resembles the morphology of VCC1249s isophotes, indicating that several of these GCs are likely in the act of being stripped from the dwarf during its passage through M49s halo. Taken together, these results point toward the opportunity of witnessing on-going giant halo assembly in the depths of a cluster environment.
We present optical spectroscopy for 18 halo white dwarfs identified using photometry from the Canada-France Imaging Survey and Pan-STARRS1 DR1 3$pi$ survey combined with astrometry from Gaia DR2. The sample contains 13 DA, 1 DZ, 2 DC, and two potenti ally exotic types of white dwarf. We fit both the spectrum and the spectral energy distribution in order to obtain the temperature and surface gravity, which we then convert into a mass, and then an age, using stellar isochrones and the initial-to-final mass relation. We find a large spread in ages that is not consistent with expected formation scenarios for the Galactic halo. We find a mean age of 9.03$^{+2.13}_{-2.03}$ Gyr and a dispersion of 4.21$^{+2.33}_{-1.58}$ Gyr for the inner halo using a maximum likelihood method. This result suggests an extended star formation history within the local halo population.
We present a study of ultra compact dwarf (UCD) galaxies in the Virgo cluster based mainly on imaging from the Next Generation Virgo Cluster Survey (NGVS). Using $sim$100 deg$^{2}$ of $u^*giz$ imaging, we have identified more than 600 candidate UCDs, from the core of Virgo out to its virial radius. Candidates have been selected through a combination of magnitudes, ellipticities, colors, surface brightnesses, half-light radii and, when available, radial velocities. Candidates were also visually validated from deep NGVS images. Subsamples of varying completeness and purity have been defined to explore the properties of UCDs and compare to those of globular clusters and the nuclei of dwarf galaxies with the aim of delineating the nature and origins of UCDs. From a surface density map, we find the UCDs to be mostly concentrated within Virgos main subclusters, around its brightest galaxies. We identify several subsamples of UCDs -- i.e., the brightest, largest, and those with the most pronounced and/or asymmetric envelopes -- that could hold clues to the origin of UCDs and possible evolutionary links with dwarf nuclei. We find some evidence for such a connection from the existence of diffuse envelopes around some UCDs, and comparisons of radial distributions of UCDs and nucleated galaxies within the cluster.
We present a study of ultra-diffuse galaxies (UDGs) in the Virgo Cluster based on deep imaging from the Next Generation Virgo Cluster Survey (NGVS). Applying a new definition for the UDG class based on galaxy scaling relations, we define samples of 4 4 and 26 UDGs using expansive and restrictive selection criteria, respectively. Our UDG sample includes objects that are significantly fainter than previously known UDGs: i.e., more than half are fainter than $langlemurangle_e sim27.5$ mag arcsec$^{-2}$. The UDGs in Virgos core region show some evidence for being structurally distinct from normal dwarf galaxies, but this separation disappears when considering the full sample of galaxies throughout the cluster. UDGs are more centrally concentrated in their spatial distribution than other Virgo galaxies of similar luminosity, while their morphologies demonstrate that at least some UDGs owe their diffuse nature to physical processes---such as tidal interactions or low-mass mergers---that are at play within the cluster environment. The globular cluster (GC) systems of Virgo UDGs have a wide range in specific frequency ($S_N$), with a higher mean $S_N$ than normal Virgo dwarfs, but a lower mean $S_N$ than Coma UDGs at fixed luminosity. Their GCs are predominantly blue, with a small contribution from red clusters in the more massive UDGs. The combined GC luminosity function is consistent with those observed in dwarf galaxies, showing no evidence of being anomalously luminous. The diversity in their morphologies and their GC properties suggests no single process has given rise to all objects within the UDG class. Based on the available evidence, we conclude that UDGs are simply those systems that occupy the extended tails of the galaxy size and surface brightness distributions.
With the imminent start of the Legacy Survey for Space and Time (LSST) on the Vera C. Rubin Observatory, and several new space telescopes expected to begin operations later in this decade, both time domain and wide-field astronomy are on the threshol d of a new era. In this paper, we use a new, multi-component model for the distribution of white dwarfs (WDs) in our Galaxy to simulate the WD populations in four upcoming wide-field surveys (i.e., LSST, Euclid, the Roman Space Telescope and CASTOR) and use the resulting samples to explore some representative WD science cases. Our results confirm that LSST will provide a wealth of information for Galactic WDs, detecting more than 150 million WDs at the final depth of its stacked, 10-year survey. Within this sample, nearly 300,000 objects will have 5$sigma$ parallax measurements and nearly 7 million will have 5$sigma$ proper motion measurements, allowing the detection of the turn-off in the halo WD luminosity function and the discovery of more than 200,000 ZZ Ceti stars. The wide wavelength coverage that will be possible by combining LSST data with observations from Euclid, and/or the Roman Space Telescope, will also discover more than 3,500 WDs with debris disks, highlighting the advantages of combining data between the ground- and space-based missions.
As the remnants of stars with initial masses $lesssim$ 8 M$_{odot}$, white dwarfs contain valuable information on the formation histories of stellar populations. In this paper, we use deep, high-quality, u-band photometry from the Canada France Imagi ng Survey (CFIS), griz photometry from Pan-STARRS 1 (PS1), as well as proper motions from Gaia DR2, to select 25,156 white dwarf candidates over $sim$4500 deg$^2$ using a reduced proper motion diagram. We develop a new white dwarf population synthesis code that returns mock observations of the Galactic field white dwarf population for a given star formation history, while simultaneously taking into account the geometry of the Milky Way, survey parameters, and selection effects. We use this model to derive the star formation histories of the thin disk, thick disk, and stellar halo. Our results show that the Milky Way disk began forming stars (11.3 $pm$ 0.5) Gyr ago, with a peak rate of (8.8 $pm$ 1.4) M$_{odot}$yr$^{-1}$ at (9.8 $pm$ 0.4) Gyr, before a slow decline to a constant rate until the present day --- consistent with recent results suggesting a merging event with a satellite galaxy. Studying the residuals between the data and best-fit model shows evidence for a slight increase in star formation over the past 3 Gyr. We fit the local fraction of helium-atmosphere white dwarfs to be (21 $pm$ 3) %. Incorporating this methodology with data from future wide-field surveys such as LSST, Euclid, CASTOR, and WFIRST should provide an unprecedented view into the formation of the Milky Way at its earliest epoch through its white dwarfs.
Intra-cluster (IC) populations are expected to be a natural result of the hierarchical assembly of clusters, yet their low space densities make them difficult to detect and study. We present the first definitive kinematic detection of an IC populatio n of globular clusters (GCs) in the Virgo cluster, around the central galaxy, M87. This study focuses on the Virgo core for which the combination of NGVS photometry and follow-up spectroscopy allows us to reject foreground star contamination and explore GC kinematics over the full Virgo dynamical range. The GC kinematics changes gradually with galactocentric distance, decreasing in mean velocity and increasing in velocity dispersion, eventually becoming indistinguishable from the kinematics of Virgo dwarf galaxies at $mathrm{R>320, kpc}$. By kinematically tagging M87 halo and intra-cluster GCs we find that 1) the M87 halo has a smaller fraction ($52pm3%$) of blue clusters with respect to the IC counterpart ($77pm10%$), 2) the $(g-r)_{0}$ vs $(i-z)_{0}$ color-color diagrams reveal a galaxy population that is redder than the IC population that may be due to a different composition in chemical abundance and progenitor mass, and 3) the ICGC distribution is shallower and more extended than the M87 GCs, yet still centrally concentrated. The ICGC specific frequency, $S_{N,mathrm{ICL}}=10.2pm4.8$, is consistent with what is observed for the population of quenched, low-mass galaxies within 1~Mpc from the clusters center. The IC population at Virgos center is thus consistent with being an accreted component from low-mass galaxies tidally stripped or disrupted through interactions, with a total mass of $mathrm{M_{ICL,tot}=10.8pm0.1times10^{11}M_{odot}}$.
We present an analysis of 39 nuclei and their early-type hosts in the Virgo Cluster using ten broadband filters: F300W, F475W, F850LP, F160W, $u^*griz$, and $K_s$. We describe the Virgo Redux program, which provides high-resolution UV and NIR imaging . Combining this data with optical and NIR imaging from the ACS Virgo Cluster Survey and the Next Generation Virgo Cluster Survey, we estimate masses, metallicities and ages using simple stellar population (SSP) models. For 19 nuclei, we compare to SSP parameters derived from Keck and Gemini spectra and find reasonable agreement between the photometric and spectroscopic metallicity: the RMS scatter is 0.3 dex. We reproduce the nucleus-galaxy mass fraction of $0.33^{+0.09}_{-0.07}$ percent for galaxy stellar masses $10^{8.4}-10^{10.3} M_odot$ with a typical precision of $sim$35% for the nuclei masses. Based on available model predictions, there is no single preferred formation scenario for nuclei, suggesting that nuclei are formed stochastically through a mix of processes. Nuclei metallicities are statistically identical to those of their hosts, appearing $0.07 pm 0.3$ dex more metal-rich on average -- although, omitting galaxies with unusual origins, nuclei are $0.20pm0.28$ dex more metal-rich. Nuclei appear to be $0.56 pm 0.12$ dex more metal rich than ultra-compact dwarf galaxies (UCDs) at fixed mass. We find no clear age difference between nuclei and their galaxies, with nuclei displaying a broad range of ages. Interestingly, we find that the most massive nuclei may be flatter and more closely aligned with the semi-major axes of their hosts, suggesting that they formed through predominantly dissipative processes.
We use three different techniques to identify hundreds of white dwarf (WD) candidates in the Next Generation Virgo Cluster Survey (NGVS) based on photometry from the NGVS and GUViCS, and proper motions derived from the NGVS and the Sloan Digital Sky Survey (SDSS). Photometric distances for these candidates are calculated using theoretical color-absolute magnitude relations while effective temperatures are measured by fitting their spectral energy distributions. Disk and halo WD candidates are separated using a tangential velocity cut of 200 km~s$^{-1}$ in a reduced proper motion diagram, which leads to a sample of six halo WD candidates. Cooling ages, calculated for an assumed WD mass of 0.6$M_{odot}$, range between 60 Myr and 6 Gyr, although these estimates depend sensitively on the adopted mass. Luminosity functions for the disk and halo subsamples are constructed and compared to previous results from the SDSS and SuperCOSMOS survey. We compute a number density of (2.81 $pm$ 0.52) $times 10^{-3}$~pc$^{-3}$ for the disk WD population--- consistent with previous measurements. We find (7.85 $pm$ 4.55) $times 10^{-6}$~pc$^{-3}$ for the halo, or 0.3% of the disk. Observed stellar counts are also compared to predictions made by the TRILEGAL and Besanc{c}on stellar population synthesis models. The comparison suggests that the TRILEGAL model overpredicts the total number of WDs. The WD counts predicted by the Besanc{c}on model agree with the observations, although a discrepancy arises when comparing the predicted and observed halo WD populations; the difference is likely due to the WD masses in the adopted model halo.
We use deep optical photometry from the Next Generation Virgo Cluster Survey [NGVS] to investigate the color-magnitude diagram for the galaxies inhabiting the core of this cluster. The sensitivity of the NGVS imaging allows us to continuously probe g alaxy colors over a factor of $sim 2 times 10^5$ in luminosity, from brightest cluster galaxies to scales overlapping classical satellites of the Milky Way [$M_{g^{prime}}$ $sim$ $-$9; $M_{*}$ $sim 10^6$ M$_{odot}$], within a single environment. Remarkably, we find the first evidence that the RS flattens in all colors at the faint-magnitude end [starting between $-$14 $le$ $M_{g^{prime}}$ $le$ $-$13, around $M_{*}$ $sim 4 times 10^7$ M$_{odot}$], with the slope decreasing to $sim$60% or less of its value at brighter magnitudes. This could indicate that the stellar populations of faint dwarfs in Virgos core share similar characteristics [e.g. constant mean age] over $sim$3 mags in luminosity, suggesting that these galaxies were quenched coevally, likely via pre-processing in smaller hosts. We also compare our results to galaxy formation models, finding that the RS in model clusters have slopes at intermediate magnitudes that are too shallow, and in the case of semi-analytic models, do not reproduce the flattening seen at both extremes [bright/faint] of the Virgo RS. Deficiencies in the chemical evolution of model galaxies likely contribute to the model-data discrepancies at all masses, while overly efficient quenching may also be a factor at dwarf scales. Deep UV and near-IR photometry are required to unambiguously diagnose the cause of the faint-end flattening.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا