ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the coherent flow of a guided Bose-Einstein condensate incident over a disordered region of length L. We introduce a model of disordered potential that originates from magnetic fluctuations inherent to microfabricated guides. This model allo ws for analytical and numerical studies of realistic transport experiments. The repulsive interaction among the condensate atoms in the beam induces different transport regimes. Below some critical interaction (or for sufficiently small L) a stationary flow is observed. In this regime, the transmission decreases exponentially with L. For strong interaction (or large L), the system displays a transition towards a time dependent flow with an algebraic decay of the time averaged transmission.
Degeneracies in the spectrum of an adiabatically transported quantum system are important to determine the geometrical phase factor, and may be interpreted as magnetic monopoles. We investigate the mechanism by which constraints acting on the system, related to local symmetries, can create arbitrarily large monopole charges. These charges are associated with different geometries of the degeneracy. An explicit method to compute the charge as well as several illustrative examples are given.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا