ترغب بنشر مسار تعليمي؟ اضغط هنا

The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t he family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
Here, we propose a method to determine the thickness of the most common transition metal dichalcogenides (TMDCs) placed on the surface of transparent stamps, used for the deterministic placement of two-dimensional materials, by analyzing the red, gre en and blue channels of transmission-mode optical microscopy images of the samples. In particular, the blue channel transmittance shows a large and monotonic thickness dependence, making it a very convenient probe of the flake thickness. The method proved to be robust given the small flake-to-flake variation and the insensitivity to doping changes of MoS2. We also tested the method for MoSe2, WS2 and WSe2. These results provide a reference guide to identify the number of layers of this family of materials on transparent substrates only using optical microscopy.
Gallium selenide (GaSe) is a novel two-dimensional material, which belongs to the layered III-VIA semiconductors family and attracted interest recently as it displays single-photon emitters at room temperature and strong optical non-linearity. Noneth eless, few-layer GaSe is not stable under ambient conditions and it tends to degrade over time. Here we combine atomic force microscopy, Raman spectroscopy and optoelectronic measurements in photodetectors based on thin GaSe to study its long-term stability. We found that the GaSe flakes exposed to air tend to decompose forming firstly amorphous selenium and Ga2Se3 and subsequently Ga2O3. While the first stage is accompanied by an increase in photocurrent, in the second stage we observe a decrease in photocurrent which leads to the final failure of GaSe photodetectors. Additionally, we found that the encapsulation of the GaSe photodetectors with hexagonal boron nitride (h-BN) can protect the GaSe from degradation and can help to achieve long-term stability of the devices.
Optical spectroscopy techniques such as differential reflectance and transmittance have proven to be very powerful techniques to study 2D materials. However, a thorough description of the experimental setups needed to carry out these measurements is lacking in the literature. We describe a versatile optical microscope setup to carry out differential reflectance and transmittance spectroscopy in 2D materials with a lateral resolution of ~1 micron in the visible and near-infrared part of the spectrum. We demonstrate the potential of the presented setup to determine the number of layers of 2D materials and to characterize their fundamental optical properties such as excitonic resonances. We illustrate its performance by studying mechanically exfoliated and chemical vapor-deposited transition metal dichalcogenide samples.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا