ترغب بنشر مسار تعليمي؟ اضغط هنا

The properties of two molecular-based magnetic helices, composed of 3$d$ metal Co and Mn ions bridged by Nitronyl Nitroxide radicals, are investigated by density functional calculations. Their peculiar and distinctive magnetic behavior is here elucid ated by a thorough description of their magnetic, electronic, and anisotropy properties. Metal ions are antiferromagnetically coupled with the radicals, leading to a ferrimagnetically ordered ground state. A strong metal-radical exchange coupling is found, about 44 meV and 48 meV for Co- and Mn-helices, respectively. The latter have also relevant next-nearest-neighbor Mn-Mn antiferromagnetic interactions (of $sim$ 6 meV). Co-sites are characterized by non-collinear uniaxial anisotropies, whereas Mn-sites are rather isotropic. A key result pertains to the Co-helix: the microscopic picture resulting from density-functional calculations allows us to propose a spin Hamiltonian of increased complexity with respect to the commonly employed Ising Hamiltonian, suitable for the study of finite-temperature behavior, and that seems to clarify the puzzling scenario of multiple characteristic energy scales observed in experiments.
111 - Nicola Lanata` , Paolo Barone , 2008
We derive, by means of an extended Gutzwiller wavefunction and within the Gutzwiller approximation, the phase diagram of the Kondo lattice model. We find that generically, namely in the absence of nesting, the model displays an $f$-electron Mott loca lization accompanied by a discontinuous change of the conduction electron Fermi surface as well as by magnetism. When the non interacting Fermi surface is close to nesting, the Mott localization disentangles from the onset of magnetism. First the paramagnetic heavy fermion metal turns continuously into an itinerant magnet - the Fermi surface evolves smoothly across the transition - and afterwards Mott localization intervenes with a discontinuous rearrangement of the Fermi surface. We find that the $f$-electron localization remains even if magnetism is prevented, and is still accompanied by a sharp transfer of spectral weigth at the Fermi energy within the Brillouin zone. We further show that the Mott localization can be also induced by an external magnetic field, in which case it occurs concomitantly with a metamagnetic transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا