ترغب بنشر مسار تعليمي؟ اضغط هنا

The most accurate measurements of magnetic fields in star-forming gas are based on the Zeeman observations analyzed by Crutcher et al. (2010). We show that their finding that the 3D magnetic field scales approximately as density$^{0.65}$ can also be obtained from analysis of the observed line-of-sight fields. We present two large-scale AMR MHD simulations of several thousand $M_odot$ of turbulent, isothermal, self-gravitating gas, one with a strong initial magnetic field (Alfven Mach number $M_{A,0}= 1$) and one with a weak initial field ($M_{A,0}=10$). We construct samples of the 100 most massive clumps in each simulation and show that they exhibit a power-law relation between field strength and density in excellent agreement with the observed one. Our results imply that the average field in molecular clumps in the interstellar medium is $<B_{tot}> sim 42 n_{H,4}^{0.65} mu$G. Furthermore, the median value of the ratio of the line-of-sight field to density$^{0.65}$ in the simulations is within a factor of about (1.3, 1.7) of the observed value for the strong and weak field cases, respectively. The median value of the mass-to-flux ratio, normalized to the critical value, is 70% of the line-of-sight value. This is larger than the 50% usually cited for spherical clouds because the actual mass-to-flux ratio depends on the volume-weighted field, whereas the observed one depends on the mass-weighted field. Our results indicate that the typical molecular clump in the ISM is significantly supercritical (~ factor of 3). The results of our strong-field model are in very good quantitative agreement with the observations of Li et al. (2009), which show a strong correlation in field orientation between small and large scales. Because there is a negligible correlation in the weak-field model, we conclude that molecular clouds form from strongly magnetized (although magnetically supercritical) gas.
The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using 2-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of ~1 (Crutcher 1999) and AD Reynolds numbers of ~20 (McKee et al. 2010), about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important that cosmic-ray heating in molecular clouds, although there is substantial scatter in both.
Performing a stable, long duration simulation of driven MHD turbulence with a high thermal Mach number and a strong initial magnetic field is a challenge to high-order Godunov ideal MHD schemes because of the difficulty in guaranteeing positivity of the density and pressure. We have implemented a robust combination of reconstruction schemes, Riemann solvers, limiters, and Constrained Transport EMF averaging schemes that can meet this challenge, and using this strategy, we have developed a new Adaptive Mesh Refinement (AMR) MHD module of the ORION2 code. We investigate the effects of AMR on several statistical properties of a turbulent ideal MHD system with a thermal Mach number of 10 and a plasma $beta_0$ of 0.1 as initial conditions; our code is shown to be stable for simulations with higher Mach numbers ($M_rms = 17.3$) and smaller plasma beta ($beta_0 = 0.0067$) as well. Our results show that the quality of the turbulence simulation is generally related to the volume-averaged refinement. Our AMR simulations show that the turbulent dissipation coefficient for supersonic MHD turbulence is about 0.5, in agreement with unigrid simulations.
Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse throug h the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256^3 and 512^3 simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li, McKee, & Klein (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا