ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we find a strong new restriction on the structure of CI-groups. We show that, if $R$ is a generalised dihedral group and if $R$ is a CI-group, then for every odd prime $p$ the Sylow $p$-subgroup of $R$ has order $p$, or $9$. Consequent ly, any CI-group with quotient a generalised dihedral group has the same restriction, that for every odd prime $p$ the Sylow $p$-subgroup of the group has order $p$, or $9$. We also give a counter example to the conjecture that every BCI-group is a CI-group.
In this paper we are interested in the asymptotic enumeration of Cayley graphs. It has previously been shown that almost every Cayley digraph has the smallest possible automorphism group: that is, it is a digraphical regular representation (DRR). In this paper, we approach the corresponding question for undirected Cayley graphs. The situation is complicated by the fact that there are two infinite families of groups that do not admit any graphical regular representation (GRR). The strategy for digraphs involved analysing separately the cases where the regular group $R$ has a nontrivial proper normal subgroup $N$ with the property that the automorphism group of the digraph fixes each $N$-coset setwise, and the cases where it does not. In this paper, we deal with undirected graphs in the case where the regular group has such a nontrivial proper normal subgroup.
Denote by $m(G)$ the largest size of a minimal generating set of a finite group $G$. We estimate $m(G)$ in terms of $sum_{pin pi(G)}d_p(G),$ where we are denoting by $d_p(G)$ the minimal number of generators of a Sylow $p$-subgroup of $G$ and by $pi( G)$ the set of prime numbers dividing the order of $G$.
We show that, there exists a constant $a$ such that, for every subgroup $H$ of a finite group $G$, the number of maximal subgroups of $G$ containing $H$ is bounded above by $a|G:H|^{3/2}$. In particular, a transitive permutation group of degree $n$ h as at most $an^{3/2}$ maximal systems of imprimitivity. When $G$ is soluble, generalizing a classic result of Tim Wall, we prove a much stroger bound, that is, the number of maximal subgroups of $G$ containing $H$ is at most $|G:H|-1$.
In this paper we extend the classical notion of digraphical and graphical regular representation of a group and we classify, by means of an explicit description, the finite groups satisfying this generalization. A graph or digraph is called regular i f each vertex has the same valency, or, the same out-valency and the same in-valency, respectively. An m-(di)graphical regular representation (respectively, m-GRR and m-DRR, for short) of a group G is a regular (di)graph whose automorphism group is isomorphic to G and acts semiregularly on the vertex set with m orbits. When m=1, this definition agrees with the classical notion of GRR and DRR. Finite groups admitting a 1-DRR were classified by Babai in 1980, and the analogue classification of finite groups admitting a 1-GRR was completed by Godsil in 1981. Pivoting on these two results in this paper we classify finite groups admitting an m-GRR or an m-DRR, for arbitrary positive integers m. For instance, we prove that every non-identity finite group admits an m-GRR, for every m>4.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا