ترغب بنشر مسار تعليمي؟ اضغط هنا

Bounding the maximal size of independent generating sets of finite groups

90   0   0.0 ( 0 )
 نشر من قبل Pablo Spiga
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Denote by $m(G)$ the largest size of a minimal generating set of a finite group $G$. We estimate $m(G)$ in terms of $sum_{pin pi(G)}d_p(G),$ where we are denoting by $d_p(G)$ the minimal number of generators of a Sylow $p$-subgroup of $G$ and by $pi(G)$ the set of prime numbers dividing the order of $G$.



قيم البحث

اقرأ أيضاً

We study an impartial achievement game introduced by Anderson and Harary. The game is played by two players who alternately select previously unselected elements of a finite group. The game ends when the jointly selected elements generate the group. The last player able to make a move is the winner of the game. We prove that the spectrum of nim-values of these games is ${0,1,2,3,4}$. This positively answers two conjectures from a previous paper by the last two authors.
We describe a new algorithm for computing braid orbits on Nielsen classes. As an application we classify all families of affine genus zero systems; that is all families of coverings of the Riemann sphere by itself such that the monodromy group is a primitive affine permutation group.
We prove that for a connected, semisimple linear Lie group $G$ the spaces of generating pairs of elements or subgroups are well-behaved in a number of ways: the set of pairs of elements generating a dense subgroup is Zariski-open in the compact case, Euclidean-open in general, and always dense. Similarly, for sufficiently generic circle subgroups $H_i$, $i=1,2$ of $G$, the space of conjugates of $H_i$ that generate a dense subgroup is always Zariski-open and dense. Similar statements hold for pairs of Lie subalgebras of the Lie algebra $Lie(G)$.
A finite group $G$ is called a Schur group, if any Schur ring over $G$ is associated in a natural way with a subgroup of $Sym(G)$ that contains all right translations. Recently, the authors have completely identified the cyclic Schur groups. In this paper it is shown that any abelian Schur group belongs to one of several explicitly given families only. In particular, any non-cyclic abelian Schur group of odd order is isomorphic to $Z_3times Z_{3^k}$ or $Z_3times Z_3times Z_p$ where $kge 1$ and $p$ is a prime. In addition, we prove that $Z_2times Z_2times Z_p$ is a Schur group for every prime $p$.
A subset $D$ of an Abelian group is $decomposable$ if $emptyset e Dsubset D+D$. In the paper we give partial answer to an open problem asking whether every finite decomposable subset $D$ of an Abelian group contains a non-empty subset $Zsubset D$ wit h $sum Z=0$. For every $ninmathbb N$ we present a decomposable subset $D$ of cardinality $|D|=n$ in the cyclic group of order $2^n-1$ such that $sum D=0$, but $sum T e 0$ for any proper non-empty subset $Tsubset D$. On the other hand, we prove that every decomposable subset $Dsubsetmathbb R$ of cardinality $|D|le 7$ contains a non-empty subset $Zsubset D$ of cardinality $|Z|lefrac12|D|$ with $sum Z=0$. For every $ninmathbb N$ we present a subset $Dsubsetmathbb Z$ of cardinality $|D|=2n$ such that $sum Z=0$ for some subset $Zsubset D$ of cardinality $|Z|=n$ and $sum T e 0$ for any non-empty subset $Tsubset D$ of cardinality $|T|<n=frac12|D|$. Also we prove that every finite decomposable subset $D$ of an Abelian group contains two non-empty subsets $A,B$ such that $sum A+sum B=0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا