ترغب بنشر مسار تعليمي؟ اضغط هنا

We construct slowly rotating black-hole solutions of Einsteinian cubic gravity (ECG) in four dimensions with flat and AdS asymptotes. At leading order in the rotation parameter, the only modification with respect to the static case is the appearance of a non-vanishing $g_{tphi}$ component. Similarly to the static case, the order of the equation determining such component can be reduced twice, giving rise to a second-order differential equation which can be easily solved numerically as a function of the ECG coupling. We study how various physical properties of the solutions are modified with respect to the Einstein gravity case, including its angular velocity, photon sphere, photon rings, shadow, and innermost stable circular orbits (in the case of timelike geodesics).
We study the first-order in $alpha$ corrections to non-extremal 4-dimensional dyonic Reissner-Nordstrom (RN) black holes with equal electric and magnetic charges in the context of Heterotic Superstring effective field theory (HST) compactified on a $ T^{6}$. The particular embedding of the dyonic RN black hole in HST considered here is not supersymmetric in the extremal limit. We show that, at first order in $alpha$, consistency with the equations of motion of the HST demands additional scalar and vector fields become active, and we provide explicit expressions for all of them. We determine analytically the position of the event horizon of the black hole, as well as the corrections to the extremality bound, to the temperature and to the entropy, checking that they are related by the first law of black-hole thermodynamics, so that $partial S/partial M=1/T$. We discuss the implications of our results in the context of the Weak Gravity Conjecture, clarifying that entropy corrections for fixed mass and charge at extremality do not necessarily imply corrections to the extremal charge-to-mass ratio.
A mild version of the weak gravity conjecture (WGC) states that extremal black holes have charge-to-mass ratio larger or equal than one when higher-curvature interactions are taken into account. Since these corrections become more relevant in the low -mass regime, this would allow the decay of extremal black holes in terms of energy and charge conservation. Evidence in this direction has been mainly given in the context of corrections to Einstein-Maxwell theory. Here we compute corrections to the charge-to-mass ratio of some dyonic extremal black holes explicitly embedded in the heterotic string effective theory. We find that modifications of the extremality bound depend on the solution considered, with the charge-to-mass ratio remaining unchanged or deviating positively from one. Additionally, we observe that the introduction of the higher-curvature terms increases the Wald entropy in all cases considered, whose variation does not seem to be correlated with the charge-to-mass ratio, contrary to the situation in Einstein-Maxwell theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا