ترغب بنشر مسار تعليمي؟ اضغط هنا

Unlike random potentials, quasi-periodic modulation can induce localisation-delocalisation transitions in one dimension. In this article, we analyse the implications of this for symmetry breaking in the quasi-periodically modulated quantum Ising chai n. Although weak modulation is irrelevant, strong modulation induces new ferromagnetic and paramagnetic phases which are fully localised and gapless. The quasi-periodic potential and localised excitations lead to quantum criticality that is intermediate to that of the clean and randomly disordered models with exponents of $ u=1^{+}$, and $zapprox 1.9$, $Delta_sigma approx 0.16$, $Delta_gammaapprox 0.63$ (up to logarithmic corrections). Technically, the clean Ising transition is destabilized by logarithmic wandering of the local reduced couplings. We conjecture that the wandering coefficient $w$ controls the universality class of the quasi-periodic transition and show its stability to smooth perturbations that preserve the quasi-periodic structure of the model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا