ترغب بنشر مسار تعليمي؟ اضغط هنا

The quasi-periodic quantum Ising transition in 1D

295   0   0.0 ( 0 )
 نشر من قبل Philip Crowley
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unlike random potentials, quasi-periodic modulation can induce localisation-delocalisation transitions in one dimension. In this article, we analyse the implications of this for symmetry breaking in the quasi-periodically modulated quantum Ising chain. Although weak modulation is irrelevant, strong modulation induces new ferromagnetic and paramagnetic phases which are fully localised and gapless. The quasi-periodic potential and localised excitations lead to quantum criticality that is intermediate to that of the clean and randomly disordered models with exponents of $ u=1^{+}$, and $zapprox 1.9$, $Delta_sigma approx 0.16$, $Delta_gammaapprox 0.63$ (up to logarithmic corrections). Technically, the clean Ising transition is destabilized by logarithmic wandering of the local reduced couplings. We conjecture that the wandering coefficient $w$ controls the universality class of the quasi-periodic transition and show its stability to smooth perturbations that preserve the quasi-periodic structure of the model.

قيم البحث

اقرأ أيضاً

The interplay of correlated spatial modulation and symmetry breaking leads to quantum critical phenomena intermediate between those of the clean and randomly disordered cases. By performing a detailed analytic and numerical case study of the quasi-pe riodically (QP) modulated transverse field Ising chain, we provide evidence for the conjectures of Ref.~cite{crowley2018quasi} regarding the QP-Ising universality class. In the generic case, we confirm that the logarithmic wandering coefficient $w$ governs both the macroscopic critical exponents and the energy-dependent localisation length of the critical excitations. However, for special values of the phase difference $Delta$ between the exchange and transverse field couplings, the QP-Ising transition has different properties. For $Delta=0$, a generalised Aubry-Andre duality prevents the finite energy excitations from localising despite the presence of logarithmic wandering. For $Delta$ such that the fields and couplings are related by a lattice shift, the wandering coefficient $w$ vanishes. Nonetheless, the presence of small couplings leads to non-trivial exponents and localised excitations. Our results add to the rich menagerie of quantum Ising transitions in the presence of spatial modulation.
We numerically study the measurement-driven quantum phase transition of Haar-random quantum circuits in $1+1$ dimensions. By analyzing the tripartite mutual information we are able to make a precise estimate of the critical measurement rate $p_c = 0. 17(1)$. We extract estimates for the associated bulk critical exponents that are consistent with the values for percolation, as well as those for stabilizer circuits, but differ from previous estimates for the Haar-random case. Our estimates of the surface order parameter exponent appear different from that for stabilizer circuits or percolation, but we are unable to definitively rule out the scenario where all exponents in the three cases match. Moreover, in the Haar case the prefactor for the entanglement entropies $S_n$ depends strongly on the Renyi index $n$; for stabilizer circuits and percolation this dependence is absent. Results on stabilizer circuits are used to guide our study and identify measures with weak finite-size effects. We discuss how our numerical estimates constrain theories of the transition.
We theoretically study transport properties in one-dimensional interacting quasiperiodic systems at infinite temperature. We compare and contrast the dynamical transport properties across the many-body localization (MBL) transition in quasiperiodic a nd random models. Using exact diagonalization we compute the optical conductivity $sigma(omega)$ and the return probability $R(tau)$ and study their average low-frequency and long-time power-law behavior, respectively. We show that the low-energy transport dynamics is markedly distinct in both the thermal and MBL phases in quasiperiodic and random models and find that the diffusive and MBL regimes of the quasiperiodic model are more robust than those in the random system. Using the distribution of the DC conductivity, we quantify the contribution of sample-to-sample and state-to-state fluctuations of $sigma(omega)$ across the MBL transition. We find that the activated dynamical scaling ansatz works poorly in the quasiperiodic model but holds in the random model with an estimated activation exponent $psiapprox 0.9$. We argue that near the MBL transition in quasiperiodic systems, critical eigenstates give rise to a subdiffusive crossover regime on finite-size systems.
Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic pha ses in the quasiperiodic $q$-state Potts model in $2+1d$. Using a controlled real-space renormalization group approach, we find that the critical behavior is largely independent of $q$, and is controlled by an infinite-quasiperiodicity fixed point. The correlation length exponent is found to be $ u=1$, saturating a modified version of the Harris-Luck criterion.
100 - H. Yarloo , A. Langari , A. Vaezi 2017
We enquire into the quasi-many-body localization in topologically ordered states of matter, revolving around the case of Kitaev toric code on ladder geometry, where different types of anyonic defects carry different masses induced by environmental er rors. Our study verifies that random arrangement of anyons generates a complex energy landscape solely through braiding statistics, which suffices to suppress the diffusion of defects in such multi-component anyonic liquid. This non-ergodic dynamic suggests a promising scenario for investigation of quasi-many-body localization. Computing standard diagnostics evidences that, in such disorder-free many-body system, a typical initial inhomogeneity of anyons gives birth to a glassy dynamics with an exponentially diverging time scale of the full relaxation. A by-product of this dynamical effect is manifested by the slow growth of entanglement entropy, with characteristic time scales bearing resemblance to those of inhomogeneity relaxation. This setting provides a new platform which paves the way toward impeding logical errors by self-localization of anyons in a generic, high energy state, originated in their exotic statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا