ﻻ يوجد ملخص باللغة العربية
Unlike random potentials, quasi-periodic modulation can induce localisation-delocalisation transitions in one dimension. In this article, we analyse the implications of this for symmetry breaking in the quasi-periodically modulated quantum Ising chain. Although weak modulation is irrelevant, strong modulation induces new ferromagnetic and paramagnetic phases which are fully localised and gapless. The quasi-periodic potential and localised excitations lead to quantum criticality that is intermediate to that of the clean and randomly disordered models with exponents of $ u=1^{+}$, and $zapprox 1.9$, $Delta_sigma approx 0.16$, $Delta_gammaapprox 0.63$ (up to logarithmic corrections). Technically, the clean Ising transition is destabilized by logarithmic wandering of the local reduced couplings. We conjecture that the wandering coefficient $w$ controls the universality class of the quasi-periodic transition and show its stability to smooth perturbations that preserve the quasi-periodic structure of the model.
The interplay of correlated spatial modulation and symmetry breaking leads to quantum critical phenomena intermediate between those of the clean and randomly disordered cases. By performing a detailed analytic and numerical case study of the quasi-pe
We numerically study the measurement-driven quantum phase transition of Haar-random quantum circuits in $1+1$ dimensions. By analyzing the tripartite mutual information we are able to make a precise estimate of the critical measurement rate $p_c = 0.
We theoretically study transport properties in one-dimensional interacting quasiperiodic systems at infinite temperature. We compare and contrast the dynamical transport properties across the many-body localization (MBL) transition in quasiperiodic a
Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic pha
We enquire into the quasi-many-body localization in topologically ordered states of matter, revolving around the case of Kitaev toric code on ladder geometry, where different types of anyonic defects carry different masses induced by environmental er