ترغب بنشر مسار تعليمي؟ اضغط هنا

(Abridged) We present a spectral analysis of a deep (220 ks) XMM-Newton observation of the Phoenix cluster (SPT-CL J2344-4243), which we also combine with Chandra archival ACIS-I data. We extract CCD and RGS X-ray spectra from the core region to sear ch for the signature of cold gas, and constrain the mass deposition rate in the cooling flow which is thought to be responsible of the massive star formation episode observed in the BCG. We find an average mass deposition rate of $dot M = 620 (-190 +200)_{stat} (-50 +150)_{syst} M_odot$/yr in the temperature range 0.3-3.0 keV from MOS data. A temperature-resolved analysis shows that a significant amount of gas is deposited only above 1.8 keV, while upper limits of the order of hundreds of $M_odot$/yr can be put in the 0.3-1.8 keV temperature range. From pn data we obtain $dot M = 210 (-80 +85)_{stat} ( -35 +60)_{syst} M_odot$/yr, and the upper limits from the temperature-resolved analysis are typically a factor of 3 lower than MOS data. In the RGS spectrum, no line emission from ionization states below Fe XXIII is seen above $12 AA$, and the amount of gas cooling below $sim 3$ keV has a best-fit value $dot M = 122_{-122}^{+343}$ $M_{odot}$/yr. In addition, our analysis of the FIR SED of the BCG based on Herschel data provides $SFR = (530 pm 50) M_odot$/yr, significantly lower than previous estimates by a factor 1.5. Current data are able to firmly identify substantial amount of cooling gas only above 1.8 keV in the core of the Phoenix cluster. While MOS data analysis is consistent with values as high as $dot M sim 1000$ within $1 sigma$, pn data provide $dot M < 500 M_odot$ yr$^{-1}$ at $3sigma$ c.l. at temperature below 1.8 keV. At present, this discrepancy cannot be explained on the basis of known calibration uncertainties or other sources of statistical noise.
We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z=1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high redshift cluster. Extended emission from the Intra Cluster Medium (ICM) is detected at a very high significance level (S/N~20) on a circular region with a 44 radius, corresponding to $R_{ext}=375$ kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature $kT=6.7^{+1.3}_{-0.9}$ keV, and a iron abundance $Z_{Fe} = 0.41_{-0.26}^{+0.29}Z_{Fe_odot}$ (error bars correspond to 1 $sigma$). We fit the background-subtracted surface brightness profile with a single $beta$-model out to 44, finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius $R_{ext}=375$ kpc to be $M_{ICM}(r<R_{ext}) = (1.48 pm 0.20) times 10^{13} M_odot$. Under the assumption of hydrostatic equilibrium and assuming isothermality within $R_{ext}$, the total mass is $M_{2500}= 1.23_{-0.27}^{+0.46} times 10 ^{14} M_odot$ for $R_{2500} = 240_{-20}^{+30}$ kpc. Extrapolating the profile at radii larger than the extraction radius $R_{ext}$ we find $M_{500} = 3.2_{-0.6}^{+0.9} times 10 ^{14}M_odot$ for $R_{500} = 562_{-37}^{+50}$ kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift $zsim 1.6$, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 $Lambda$CDM cosmology.
(Abridged) We present a spectral analysis of a new, flux-limited sample of 72 X-ray selected clusters of galaxies identified with the X-ray Telescope (XRT) on board the Swift satellite down to a flux limit of ~10-14 erg/s/cm2 (SWXCS, Tundo et al. 201 2). We carry out a detailed X-ray spectral analysis with the twofold aim of measuring redshifts and characterizing the properties of the Intra-Cluster Medium (ICM). Optical counterparts and spectroscopic or photometric redshifts are obtained with a cross-correlation with NED. Additional photometric redshifts are computed with a dedicated follow-up program with the TNG and a cross-correlation with the SDSS. We also detect the iron emission lines in 35% of the sample, and hence obtain a robust measure of the X-ray redshift zX. We use zX whenever the optical redshift is not available. Finally, for all the sources with measured redshift, background-subtracted spectra are fitted with a mekal model. We perform extensive spectral simulations to derive an empirical formula to account for fitting bias. The bias-corrected values are then used to investigate the scaling properties of the X-ray observables. Overall, we are able to characterize the ICM of 46 sources. The sample is mostly constituted by clusters with temperatures between 3 and 10 keV, plus 14 low-mass clusters and groups with temperatures below 3 keV. The redshift distribution peaks around z~0.25 and extends up to z~1, with 60% of the sample at 0.1<z<0.4. We derive the Luminosity-Temperature relation for these 46 sources, finding good agreement with previous studies. The quality of the SWXCS sample is comparable to other samples available in the literature and obtained with much larger X-ray telescopes. Our results have interesting implications for the design of future X-ray survey telescopes, characterised by good-quality PSF over the entire field of view and low background.
(Abridged) We report the discovery of CXO J1415.2+3610, a distant (z~1.5) galaxy cluster serendipitously detected in a deep, high-resolution Chandra observation targeted to study the cluster WARP J1415.1+3612 at z=1.03. This is the highest-z cluster discovered with Chandra so far. Moreover, the total exposure time of 280 ks with ACIS-S provides the deepest X-ray observation currently achieved on a cluster at z>1.5. We perform an X-ray spectral fit of the extended emission of the intracluster medium (ICM) with XSPEC, and we detect at a 99.5% confidence level the rest frame 6.7-6.9 keV Iron K_alpha line complex, from which we obtain z_X=1.46pm0.025. The analysis of the z-3.6mu m color-magnitude diagram shows a well defined sequence of red galaxies within 1 from the cluster X-ray emission peak with a color range [5 < z-3.6 mu m < 6]. The photometric redshift obtained by spectral energy distribution (SED) fitting is z_phot=1.47pm 0.25. After fixing the redshift to z=1.46, we perform the final spectral analysis and measure the average gas temperature with a 20% error, kT=5.8^{+1.2}_{-1.0} keV, and the Fe abundance Z_Fe = 1.3_{-0.5}^{+0.8}Z_odot. We fit the background subtracted surface brightness with a single beta--model out to 35 and derive the deprojected electron density profile. The ICM mass is 1.09_{-0.2}^{+0.3}times 10^{13} M_odot within 300 kpc. The total mass is M_{2500}= 8.6_{-1.7}^{+2.1} times 10 ^{13} M_odot for R_{2500}=(220pm 55) kpc. Extrapolating the profile at larger radii we find M_{500}= 2.1_{-0.5}^{+0.7} times 10 ^{14} M_odot for R_{500} = 510_{-50}^{+55}$ kpc. This analysis establishes CXOJ1415.2+3610 as one of the best characterized distant galaxy clusters based on X-ray data alone.
In order to trace the instantaneous star formation rate at high redshift, and hence help understanding the relation between the different emission mechanisms related to star formation, we combine the recent 4 Ms Chandra X-ray data and the deep VLA ra dio data in the Extended Chandra Deep Field South region. We find 268 sources detected both in the X-ray and radio band. The availability of redshifts for $sim 95$ of the sources in our sample allows us to derive reliable luminosity estimates and the intrinsic properties from X-ray analysis for the majority of the objects. With the aim of selecting sources powered by star formation in both bands, we adopt classification criteria based on X-ray and radio data, exploiting the X-ray spectral features and time variability, taking advantage of observations scattered across more than ten years. We identify 43 objects consistent with being powered by star formation. We also add another 111 and 70 star forming candidates detected only in the radio or X-ray band, respectively. We find a clear linear correlation between radio and X-ray luminosity in star forming galaxies over three orders of magnitude and up to $z sim 1.5$. We also measure a significant scatter of the order of 0.4 dex, higher than that observed at low redshift, implying an intrinsic scatter component. The correlation is consistent with that measured locally, and no evolution with redshift is observed. Using a locally calibrated relation between the SFR and the radio luminosity, we investigate the L_X(2-10keV)-SFR relation at high redshift. The comparison of the star formation rate measured in our sample with some theoretical models for the Milky Way and M31, two typical spiral galaxies, indicates that, with current data, we can trace typical spirals only at z<0.2, and strong starburst galaxies with star-formation rates as high as $sim 100 M_odot yr^{-1}$, up to $zsim 1.5$.
Comet 67P/Churyumov-Gerasimenko is the main target of ESAs Rosetta mission and will be encountered in May 2014. As the spacecraft shall be in orbit the comet nucleus before and after release of the lander {it Philae}, it is necessary necessary to kno w the conditions in the coma. Study the dust environment, including the dust production rate and its variations along its preperihelion orbit. The comet was observed during its approach to the Sun on four epochs between early-June 2008 and mid-January 2009, over a large range of heliocentric distances that will be covered by the mission in 2014. An anomalous enhancement of the coma dust density was measured towards the comet nucleus. The scalelength of this enhancement increased with decreasing heliocentric distance of the comet. This is interpreted as a result of an unusually slow expansion of the dust coma. Assuming a spherical symmetric coma, the average amount of dust as well as its ejection velocity have been derived. The latter increases exponentially with decreasing heliocentric distance (rh), ranging from about 1 m/s at 3 AU to about 25-35 m/s at 1.4 AU. Based on these results we describe the dust environment at those nucleocentric distances at which the spacecraft will presumably be in orbit. Astronomy and Astrophysics, in press
71 - P. Tozzi , J. Santos , H. Yu 2010
We investigate the scientific impact of the Wide Field X-ray Telescope mission. We present simulated images and spectra of X-ray sources as observed from the three surveys planned for the nominal 5-year WFXT lifetime. The goal of these simulations is to provide WFXT images of the extragalactic sky in different energy bands based on accurate description of AGN populations, normal and star forming galaxies, groups and clusters of galaxies. The images are realized using a detailed PSF model, instrumental and physical backgrounds/foregrounds, accurate model of the effective area and the related vignetting effect. Thanks to this comprehensive modelization of the WFXT properties, the simulated images can be used to evaluate the flux limits for detection of point and extended sources, the effect of source confusion at very faint fluxes, and in general the efficiency of detection algorithms. We also simulate the spectra of the detected sources, in order to address specific science topics which are unique to WFXT. Among them, we focus on the characterization of the Intra Cluster Medium (ICM) of high-z clusters, and in particular on the measurement of the redshift from the ICM spectrum in order to build a cosmological sample of galaxy clusters. The end-to-end simulation procedure presented here, is a valuable tool in optimizing the mission design. Therefore, these simulations can be used to reliably characterize the WFXT discovery space and to verify the connection between mission requirements and scientific goals. Thanks to this effort, we can conclude on firm basis that an X-ray mission optimized for surveys like WFXT is necessary to bring X-ray astronomy at the level of the optical, IR, submm and radio wavebands as foreseen in the coming decade.
106 - P. Rosati , P. Tozzi , R. Gobat 2009
[Abridged] XMMU J2235.3-2557 is one of the most distant X-ray selected clusters, spectroscopically confirmed at z=1.39. We characterize the galaxy populations of passive members, the thermodynamical properties of the hot gas, its metal abundance and the total mass of the system using imaging data with HST/ACS (i775 and z850 bands) and VLT/ISAAC (J and K_s bands), extensive spectroscopic data obtained with VLT/FORS2, and deep Chandra observations. Out of a total sample of 34 spectroscopically confirmed cluster members, we selected 16 passive galaxies within the central 2 (or 1 Mpc) with ACS coverage, and inferred star formation histories for a sub-sample of galaxies inside and outside the core by modeling their spectro-photometric data with spectral synthesis models, finding a strong mean age radial gradient. Chandra data show a regular elongated morphology, closely resembling the distribution of core galaxies, with a significant cool core. We measure a global X-ray temperature of kT=8.6(-1.2,+1.3) keV (68% c.l.). By detecting the rest-frame 6.7 keV Iron K line, we measure a metallicty Z= 0.26(+0.20,-0.16) Zsun. In the likely hypothesis of hydrostatic equilibrium, we obtain a total mass of Mtot(<1 Mpc)=(5.9+-1.3)10^14 Msun. Overall, our analysis implies that XMM2235 is the hottest and most massive bona-fide cluster discovered to date at z>1, with a baryonic content, both its galaxy population and intra-cluster gas, in a significantly advanced evolutionary stage at 1/3 of the current age of the Universe.
75 - S. Murray 2009
We discuss the central role played by X-ray studies to reconstruct the past history of formation and evolution of supermassive Black Holes (BHs), and the role they played in shaping the properties of their host galaxies. We shortly review the progres s in this field contributed by the current X-ray and multiwavelength surveys. Then, we focus on the outstanding scientific questions that have been opened by observations carried out in the last years and that represent the legacy of Chandra and XMM, as for X-ray observations, and the legacy of the SDSS, as for wide area surveys: 1) When and how did the first supermassive black holes form? 2) How does cosmic environment regulate nuclear activity (and star formation) across cosmic time? 3) What is the history of nuclear activity in a galaxy lifetime? We show that the most efficient observational strategy to address these questions is to carry out a large-area X-ray survey, reaching a sensitivity comparable to that of deep Chandra and XMM pointings, but extending over several thousands of square degrees. Such a survey can only be carried out with a Wide-Field X-ray Telescope (WFXT) with a high survey speed, due to the combination of large field of view and large effective area, i.e., grasp, and sharp PSF. We emphasize the important synergies that WFXT will have with a number of future groundbased and space telescopes, covering from the radio to the X-ray bands and discuss the immense legacy value that such a mission will have for extragalactic astronomy at large.
92 - P. Tozzi 2009
We present the multiwavelength properties of 266 cataloged radio sources identified with 20 and 6 cm VLA deep observations of the CDFS at a flux density limit of 42 mu Jy at the field centre at 1.4 GHz. These new observations probe the faint end of b oth the star formation and radio galaxy/AGN population. X-ray data, including upper limits, turn out to be a key factor in establishing the nature of faint radio sources. We find that, while the well-known flattening of the radio number counts below 1 mJy is mostly due to star forming galaxies, these sources and AGN make up an approximately equal fraction of the sub--millijansky sky, contrary to some previous results. We have also uncovered a population of distant AGN systematically missing from many previous studies of sub-millijansky radio source identifications. The AGN include radio galaxies, mostly of the low-power, Fanaroff-Riley I type, and a significant radio-quiet component, which amounts to approximately one fifth of the total sample. We also find that radio detected, X-ray AGN are not more heavily obscured than the X-ray detected AGN. This argues against the use of radio surveys as an efficient way to search for the missing population of strongly absorbed AGN.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا