ترغب بنشر مسار تعليمي؟ اضغط هنا

Chandra deep observation of XDCP J0044.0-2033, a massive galaxy cluster at z>1.5

165   0   0.0 ( 0 )
 نشر من قبل Paolo Tozzi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z=1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high redshift cluster. Extended emission from the Intra Cluster Medium (ICM) is detected at a very high significance level (S/N~20) on a circular region with a 44 radius, corresponding to $R_{ext}=375$ kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature $kT=6.7^{+1.3}_{-0.9}$ keV, and a iron abundance $Z_{Fe} = 0.41_{-0.26}^{+0.29}Z_{Fe_odot}$ (error bars correspond to 1 $sigma$). We fit the background-subtracted surface brightness profile with a single $beta$-model out to 44, finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius $R_{ext}=375$ kpc to be $M_{ICM}(r<R_{ext}) = (1.48 pm 0.20) times 10^{13} M_odot$. Under the assumption of hydrostatic equilibrium and assuming isothermality within $R_{ext}$, the total mass is $M_{2500}= 1.23_{-0.27}^{+0.46} times 10 ^{14} M_odot$ for $R_{2500} = 240_{-20}^{+30}$ kpc. Extrapolating the profile at radii larger than the extraction radius $R_{ext}$ we find $M_{500} = 3.2_{-0.6}^{+0.9} times 10 ^{14}M_odot$ for $R_{500} = 562_{-37}^{+50}$ kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift $zsim 1.6$, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 $Lambda$CDM cosmology.



قيم البحث

اقرأ أيضاً

We investigate various galaxy population properties of the massive X-ray luminous galaxy cluster XDCP J0044.0-2033 at z=1.58, which constitutes the most extreme matter density peak at this redshift currently known. We analyze deep VLT/HAWK-I NIR data in the J- and Ks-bands, complemented by Subaru imaging in i and V, Spitzer observations at 4.5 micron, and new spectroscopic observations with VLT/FORS2. We detect a cluster-associated excess population of about 90 galaxies, which follows a centrally peaked, compact NFW galaxy surface density profile with a concentration of c200~10. Based on the Spitzer 4.5 micron imaging data, we measure a stellar mass fraction of fstar,500=(3.3+-1.4)% consistent with local values. The total J- and Ks-band galaxy luminosity functions of the core region yield characteristic magnitudes J* and Ks* consistent with expectations from simple z_f=3 burst models. However, a detailed look at the morphologies and color distributions of the spectroscopically confirmed members reveals that the most massive galaxies are undergoing a very active mass assembly epoch through merging processes. Consequently, the bright end of the cluster red-sequence is not in place, while at intermediate magnitudes [Ks*,Ks*+1.6] a red-locus population is present, which is then sharply truncated at magnitudes fainter than Ks*+1.6. The dominant cluster core population comprises post-quenched galaxies transitioning towards the red-sequence at intermediate magnitudes, while additionally a significant blue cloud population of faint star-forming galaxies is present even in the densest central regions. Our observations lend support to the scenario in which the dominant effect of the dense z~1.6 cluster environment is an accelerated mass assembly timescale through merging activity that is responsible for driving core galaxies across the mass quenching threshold of log(Mstar/Msun)~10.4.
(Abridged) We report the discovery of CXO J1415.2+3610, a distant (z~1.5) galaxy cluster serendipitously detected in a deep, high-resolution Chandra observation targeted to study the cluster WARP J1415.1+3612 at z=1.03. This is the highest-z cluster discovered with Chandra so far. Moreover, the total exposure time of 280 ks with ACIS-S provides the deepest X-ray observation currently achieved on a cluster at z>1.5. We perform an X-ray spectral fit of the extended emission of the intracluster medium (ICM) with XSPEC, and we detect at a 99.5% confidence level the rest frame 6.7-6.9 keV Iron K_alpha line complex, from which we obtain z_X=1.46pm0.025. The analysis of the z-3.6mu m color-magnitude diagram shows a well defined sequence of red galaxies within 1 from the cluster X-ray emission peak with a color range [5 < z-3.6 mu m < 6]. The photometric redshift obtained by spectral energy distribution (SED) fitting is z_phot=1.47pm 0.25. After fixing the redshift to z=1.46, we perform the final spectral analysis and measure the average gas temperature with a 20% error, kT=5.8^{+1.2}_{-1.0} keV, and the Fe abundance Z_Fe = 1.3_{-0.5}^{+0.8}Z_odot. We fit the background subtracted surface brightness with a single beta--model out to 35 and derive the deprojected electron density profile. The ICM mass is 1.09_{-0.2}^{+0.3}times 10^{13} M_odot within 300 kpc. The total mass is M_{2500}= 8.6_{-1.7}^{+2.1} times 10 ^{13} M_odot for R_{2500}=(220pm 55) kpc. Extrapolating the profile at larger radii we find M_{500}= 2.1_{-0.5}^{+0.7} times 10 ^{14} M_odot for R_{500} = 510_{-50}^{+55}$ kpc. This analysis establishes CXOJ1415.2+3610 as one of the best characterized distant galaxy clusters based on X-ray data alone.
469 - Joana S. Santos 2011
Using the deepest (370 ksec) Chandra observation of a high-redshift galaxy cluster, we perform a detailed characterization of the intra-cluster medium (ICM) of WARPJ1415.1+3612 at z=1.03. We also explore the connection between the ICM core properties and the radio/optical properties of the brightest cluster galaxy (BCG). We perform a spatially resolved analysis of the ICM to obtain temperature, metallicity and surface brightness profiles. Using the deprojected temperature and density profiles we accurately derive the cluster mass at different overdensities. In addition to the X-ray data, we use archival radio VLA imaging and optical GMOS spectroscopy of the central galaxy to investigate the feedback between the central galaxy and the ICM. The X-ray spectral analysis shows a significant temperature drop towards the cluster center, with a projected value of Tc = 4.6 pm 0.4 keV, and a remarkably high central iron abundance peak, Zc= 3.6 Zsun. The central cooling time is shorter than 0.1 Gyr and the entropy is equal to 9.9 keV cm2. We detect a strong [OII] emission line in the optical spectra of the BCG with an equivalent width of -25 AA, for which we derive a star formation rate within the range 2 - 8 Msun/yr. The VLA data reveals a central radio source coincident with the BCG and a faint one-sided jet-like feature with an extent of 80 kpc. The analysis presented shows that WARPJ1415 has a well developed cool core with ICM properties similar to those found in the local Universe. Its properties and the clear sign of feedback activity found in the central galaxy in the optical and radio bands, show that feedback processes are already established at z~1. In addition, the presence of a strong metallicity peak shows that the central regions have been promptly enriched by star formation processes in the central galaxy already at z > 1.
The results of multiwavelength observations of the very massive galaxy cluster SRGe CL2305.2-2248 detected in X-rays during the first SRG/eROSITA all-sky survey are discussed. This galaxy cluster was also detected earlier in microwave band through th e observations of Sunyaev-Zeldovich effect in South Pole Telescope (SPT-CL J2305-2248), and in Atacama Cosmological Telescope (ACT-CL J2305.1-2248) surveys. Spectroscopic redshift measurement, $z=0.7573$, was measured at the Russian 6-m BTA telescope of SAO RAS, in good agreement with its photometric estimates, including a very accurate one obtained using machine learning methods. In addition, deep photometric measurements were made at the Russian-Turkish 1.5-m telescope (RTT150), which allows to study cluster galaxies red sequence and projected galaxies distribution. Joint analysis of the data from X-ray and microwave observations show that this cluster can be identified as a very massive and distant one using the measurements of its X-ray flux and integral comptonization parameter only. The mass of the cluster estimated according to the eROSITA data is $M_{500}=(9.0pm2.6)cdot10^{14}, M_odot$. We show that this cluster is found among of only several dozen of the most massive clusters in the observable Universe and among of only a few the most massive clusters of galaxies at $z>0.6$.
139 - Joana S. Santos 2011
We report on the discovery of a very distant galaxy cluster serendipitously detected in the archive of the XMM-Newton mission, within the scope of the XMM-Newton Distant Cluster Project (XDCP). XMMUJ0044.0-2033 was detected at a high significance lev el (5sigma) as a compact, but significantly extended source in the X-ray data, with a soft-band flux f(r<40)=(1.5+-0.3)x10^(-14) erg/s/cm2. Optical/NIR follow-up observations confirmed the presence of an overdensity of red galaxies matching the X-ray emission. The cluster was spectroscopically confirmed to be at z=1.579 using ground-based VLT/FORS2 spectroscopy. The analysis of the I-H colour-magnitude diagram shows a sequence of red galaxies with a colour range [3.7 < I-H < 4.6] within 1 from the cluster X-ray emission peak. However, the three spectroscopic members (all with complex morphology) have significantly bluer colours relative to the observed red-sequence. In addition, two of the three cluster members have [OII] emission, indicative of on-going star formation. Using the spectroscopic redshift we estimated the X-ray bolometric luminosity, Lbol = 5.8x10^44 erg/s, implying a massive galaxy cluster. This places XMMU J0044.0-2033 at the forefront of massive distant clusters, closing the gap between lower redshift systems and recently discovered proto- and low-mass clusters at z >1.6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا