ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new observations of the (6,6) and (9,9) inversion transitions of the hydronium ion toward Sagittarius B2(N) and W31C. Sensitive observations toward Sagittarius B2(N) show that the high, ~ 500 K, rotational temperatures characterizing the p opulation of the highly-excited metastable H3O+ rotational levels are present over a wide range of velocities corresponding to the Sagittarius B2 envelope, as well as the foreground gas clouds between the Sun and the source. Observations of the same lines toward W31C, a line of sight that does not intersect the Central Molecular Zone, but instead traces quiescent gas in the Galactic disk, also imply a high rotational temperature of ~ 380 K, well in excess of the kinetic temperature of the diffuse Galactic interstellar medium. While it is plausible that some fraction of the molecular gas may be heated to such high temperatures in the active environment of the Galactic center, characterized by high X-ray and cosmic ray fluxes, shocks and high degree of turbulence, this is unlikely in the largely quiescent environment of the Galactic disk clouds. We suggest instead that the highly-excited states of the hydronium ion are populated mainly by exoergic chemical formation processes and temperature describing the rotational level population does not represent the physical temperature of the medium. The same arguments may be applicable to other symmetric top rotors, such as ammonia. This offers a simple explanation to the long-standing puzzle of the presence of a pervasive, hot molecular gas component in the central region of the Milky Way. Moreover, our observations suggest that this is a universal process, not limited to the active environments associated with galactic nuclei.
We aim at deriving the molecular abundances and temperatures of the hot molecular cores in the high-mass star-forming region NGC 6334I and consequently deriving their physical and astrochemical conditions. In the framework of the Herschel guaranteed time key program CHESS, NGC 6334I is investigated by using HIFI aboard the Herschel Space Observatory. A spectral line survey is carried out in the frequency range 480-1907 GHz, and auxiliary interferometric data from the SMA in the 230 GHz band provide spatial information for disentangling the different physical components contributing to the HIFI spectrum. The spectral lines are identified with the aid of former surveys and spectral line catalogs. The observed spectrum is then compared to a simulated synthetic spectrum with XCLASS, assuming local thermal equilibrium, and best fit parameters are derived using the model optimization package MAGIX. A total of 46 molecules are identified, with 31 isotopologues, resulting in about 4300 emission and absorption lines. High- energy levels of the dominant emitter methanol and vibrationally excited HCN are detected. The number of unidentified lines remains low with 75, or less than 2 percent of the lines detected. The modeling suggests that several spectral features need two or more components to be fitted properly. Other components could be assigned to cold foreground clouds or to outflows, most visible in the SiO emission. A chemical variation between the two embedded hot cores is found, with more N-bearing molecules identified in SMA1 and O-bearing molecules in SMA2. Spectral line surveys give powerful insights into the study of the interstellar medium. Different molecules trace different physical conditions like the inner hot core, the envelope, the outflows or the cold foreground clouds. The derived molecular abundances provide further constraints for astrochemical models.
138 - S.-L. Qin , P. Schilke , R. Rolffs 2011
We report the first high spatial resolution submillimeter continuum observations of the Sagittarius B2 cloud complex using the Submillimeter Array (SMA). With the subarcsecond resolution provided by the SMA, the two massive star-forming clumps Sgr B2 (N) and Sgr B2(M) are resolved into multiple compact sources. In total, twelve submillimeter cores are identified in the Sgr B2(M) region, while only two components are observed in the Sgr B2(N) clump. The gas mass and column density are estimated from the dust continuum emission. We find that most of the cores have gas masses in excess of 100 M$_{odot}$ and column densities above 10$^{25}$ cm$^{-2}$. The very fragmented appearance of Sgr B2(M), in contrast to the monolithic structure of Sgr B2 (N), suggests that the former is more evolved. The density profile of the Sgr B2(N)-SMA1 core is well fitted by a Plummer density distribution. This would lead one to believe that in the evolutionary sequence of the Sgr B2 cloud complex, a massive star forms first in an homogeneous core, and the rest of the cluster forms subsequently in the then fragmenting structure.
169 - S.-L. Qin , P. Schilke , C. Comito 2010
We have observed CH absorption lines ($J=3/2, N=1 leftarrow J=1/2, N=1$) against the continuum source Sgr~B2(M) using the textit{Herschel}/HIFI instrument. With the high spectral resolution and wide velocity coverage provided by HIFI, 31 CH absorptio n features with different radial velocities and line widths are detected and identified. The narrower line width and lower column density clouds show `spiral arm cloud characteristics, while the absorption component with the broadest line width and highest column density corresponds to the gas from the Sgr~B2 envelope. The observations show that each `spiral arm harbors multiple velocity components, indicating that the clouds are not uniform and that they have internal structure. This line-of-sight through almost the entire Galaxy offers unique possibilities to study the basic chemistry of simple molecules in diffuse clouds, as a variety of different cloud classes are sampled simultaneously. We find that the linear relationship between CH and H$_2$ column densities found at lower $A_V$ by UV observations does not continue into the range of higher visual extinction. There, the curve flattens, which probably means that CH is depleted in the denser cores of these clouds.
H2O+ has been observed in its ortho- and para- states toward the massive star forming core Sgr B2(M), located close to the Galactic center. The observations show absorption in all spiral arm clouds between the Sun and Sgr B2. The average o/p ratio of H2O+ in most velocity intervals is 4.8, which corresponds to a nuclear spin temperature of 21 K. The relationship of this spin temperature to the formation temperature and current physical temperature of the gas hosting H2O+ is discussed, but no firm conclusion is reached. In the velocity interval 0 to 60 km/s, an ortho/para ratio of below unity is found, but if this is due to an artifact of contamination by other species or real is not clear.
High levels of deuterium fractionation in gas-phase molecules are usually associated with cold regions, such as prestellar cores. Significant fractionation ratios are also observed in hot environments such as hot cores or hot corinos, where they are believed to be produced by the evaporation of the icy mantles surrounding dust grains, and thus are remnants of a previous cold (either gas-phase or grain surface) chemistry. The recent detection of DCN towards the Orion Bar, in a clump at a characteristic temperature of 70K, has shown that high deuterium fractionation can also be detected in PDRs. The Orion Bar clumps thus appear as a good environment for the observational study of deuterium fractionation in luke-warm gas, allowing to validate chemistry models in a different temperature range, where dominating fractionation processes are predicted to be different than in cold gas (< 20K). We aimed at studying observationally in detail the chemistry at work in the Orion Bar PDR, to understand if DCN is produced by ice mantle evaporation, or is the result of warm gas-phase chemistry, involving the CH2D+ precursor ion (which survives higher temperatures than the usual H2D+ precursor). Using the APEX and the IRAM 30m telescopes, we targetted selected deuterated species towards two clumps in the Orion Bar. We confirmed the detection of DCN and detected two new deuterated molecules (DCO+ and HDCO) towards one clump in the Orion Bar PDR. Significant deuterium fractionations are found for HCN and H2CO, but a low fractionation in HCO+. We also give upper limits for other molecules relevant for the deuterium chemistry. (...) We show evidence that warm deuterium chemistry driven by CH2D+ is at work in the clumps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا