ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel observations of ortho- and para-oxidaniumyl (H2O+) in spiral arm clouds toward Sgr B2(M)

262   0   0.0 ( 0 )
 نشر من قبل Peter Schilke
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

H2O+ has been observed in its ortho- and para- states toward the massive star forming core Sgr B2(M), located close to the Galactic center. The observations show absorption in all spiral arm clouds between the Sun and Sgr B2. The average o/p ratio of H2O+ in most velocity intervals is 4.8, which corresponds to a nuclear spin temperature of 21 K. The relationship of this spin temperature to the formation temperature and current physical temperature of the gas hosting H2O+ is discussed, but no firm conclusion is reached. In the velocity interval 0 to 60 km/s, an ortho/para ratio of below unity is found, but if this is due to an artifact of contamination by other species or real is not clear.



قيم البحث

اقرأ أيضاً

Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes -- grain surfaces versus energetic process in the gas phase, e.g. in shocks. The HIFI observations of multiple trans itions of HDO in Sgr~B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance ($2.5times 10^{-11}$) in the outer envelope at temperatures below 100~K through a medium abundance ($1.5times 10^{-9}$) in the inner envelope/outer core, at temperatures between 100 and 200~K, and finally a high abundance ($3.5times 10^{-9}$) at temperatures above 200~K in the hot core.
We present Herschel/HIFI observations of the fundamental rotational transitions of ortho- and para-H$_2^{16}$O and H$_2^{18}$O in absorption towards Sagittarius~B2(M) and W31C. The ortho/para ratio in water in the foreground clouds on the line of sig ht towards these bright continuum sources is generally consistent with the statistical high-temperature ratio of 3, within the observational uncertainties. However, somewhat unexpectedly, we derive a low ortho/para ratio of $2.35 pm 0.35$, corresponding to a spin temperature of $sim$27~K, towards Sagittarius~B2(M) at velocities of the expanding molecular ring. Water molecules in this region appear to have formed with, or relaxed to, an ortho/para ratio close to the value corresponding to the local temperature of the gas and dust.
We identify a prominent absorption feature at 1115 GHz, detected in first HIFI spectra towards high-mass star-forming regions, and interpret its astrophysical origin. The characteristic hyperfine pattern of the H2O+ ground-state rotational transition , and the lack of other known low-energy transitions in this frequency range, identifies the feature as H2O+ absorption against the dust continuum background and allows us to derive the velocity profile of the absorbing gas. By comparing this velocity profile with velocity profiles of other tracers in the DR21 star-forming region, we constrain the frequency of the transition and the conditions for its formation. In DR21, the velocity distribution of H2O+ matches that of the [CII] line at 158mum and of OH cm-wave absorption, both stemming from the hot and dense clump surfaces facing the HII-region and dynamically affected by the blister outflow. Diffuse foreground gas dominates the absorption towards Sgr B2. The integrated intensity of the absorption line allows us to derive lower limits to the H2O+ column density of 7.2e12 cm^-2 in NGC 6334, 2.3e13 cm^-2 in DR21, and 1.1e15 cm^-2 in Sgr B2.
The understanding of interstellar nitrogen chemistry has improved significantly with recent results from the Herschel Space Observatory. To set even better constraints, we report here on deep searches for the NH+ ground state rotational transition J= 1.5-0.5 of the ^2Pi_1/2 lower spin ladder, with fine-structure transitions at 1013 and 1019 GHz, and the para-NH2- 1_1,1-0_0,0 rotational transition at 934 GHz towards Sgr B2(M) and G10.6-0.4 using Herschel-HIFI. No clear detections of NH+ are made and the derived upper limits are <2*10^-12 and <7*10^-13 in Sgr B2(M) and G10.6-0.4, respectively. The searches are complicated by the fact that the 1013 GHz transition lies only -2.5 km/s from a CH2NH line, seen in absorption in Sgr B2(M), and that the hyperfine structure components in the 1019 GHz transition are spread over 134 km/s. Searches for the so far undetected NH2- anion turned out to be unfruitful towards G10.6-0.4, while the para-NH2- 1_1,1-0_0,0 transition was tentatively detected towards Sgr B2(M) at a velocity of 19 km/s. Assuming that the absorption occurs at the nominal source velocity of +64 km/s, the rest frequency would be 933.996 GHz, offset by 141 MHz from our estimated value. Using this feature as an upper limit, we found N(p-NH2-)<4*10^11 cm^-2. The upper limits for both species in the diffuse line-of-sight gas are less than 0.1 to 2 % of the values found for NH, NH2, and NH3 towards both sources. Chemical modelling predicts an NH+ abundance a few times lower than our present upper limits in diffuse gas and under typical Sgr B2(M) envelope conditions. The NH2- abundance is predicted to be several orders of magnitudes lower than our observed limits, hence not supporting our tentative detection. Thus, while NH2- may be very difficult to detect in interstellar space, it could, be possible to detect NH+ in regions where the ionisation rates of H2 and N are greatly enhanced.
We have used the Herschel-HIFI instrument to observe both nuclear spin symmetries of amidogen (NH2) towards the high-mass star-forming regions W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4) and G34.3+0.1. The aim is to investigate the ratio of n uclear spin types, the ortho-to-para ratio (OPR), of NH2. The excited NH2 transitions are used to construct radiative transfer models of the hot cores and surrounding envelopes in order to investigate the excitation and possible emission of the ground state rotational transitions of ortho-NH2 N_(K_a,K_c} J=1_(1,1) 3/2 - 0_(0,0) 1/2 and para-NH2 2_(1,2) 5/2 - 1_(0,1) 3/2$ used in the OPR calculations. Our best estimate of the average OPR in the envelopes lie above the high temperature limit of three for W49N, specifically 3.5 with formal errors of pm0.1, but for W31C, W51, and G34.3+0.1 we find lower values of 2.5pm0.1, 2.7pm0.1, and 2.3pm0.1, respectively. Such low values are strictly forbidden in thermodynamical equilibrium since the OPR is expected to increase above three at low temperatures. In the translucent interstellar gas towards W31C, where the excitation effects are low, we find similar values between 2.2pm0.2 and 2.9pm0.2. In contrast, we find an OPR of 3.4pm0.1 in the dense and cold filament connected to W51, and also two lower limits of >4.2 and >5.0 in two other translucent gas components towards W31C and W49N. At low temperatures (T lesssim 50 K) the OPR of H2 is <10^-1, far lower than the terrestrial laboratory normal value of three. In such a para-enriched H2 gas, our astrochemical models can reproduce the variations of the observed OPR, both below and above the thermodynamical equilibrium value, by considering nuclear-spin gas-phase chemistry. The models suggest that values below three arise in regions with temperatures >20-25 K, depending on time, and values above three at lower temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا