ترغب بنشر مسار تعليمي؟ اضغط هنا

128 - F. Camilo , M. Kerr , P. S. Ray 2015
In a search with the Parkes radio telescope of 56 unidentified Fermi-LAT gamma-ray sources, we have detected 11 millisecond pulsars (MSPs), 10 of them discoveries, of which five were reported in Kerr et al. (2012). We did not detect radio pulsations from another six pulsars now known in these sources. We describe the completed survey, which included multiple observations of many targets done to minimize the impact of interstellar scintillation, acceleration effects in binary systems, and eclipses. We consider that 23 of the 39 remaining sources may still be viable pulsar candidates. We present timing solutions and polarimetry for five of the MSPs, and gamma-ray pulsations for PSR J1903-7051 (pulsations for five others were reported in the second Fermi-LAT catalog of gamma-ray pulsars). Two of the new MSPs are isolated and five are in >1 d circular orbits with 0.2-0.3 Msun presumed white dwarf companions. PSR J0955-6150, in a 24 d orbit with a ~0.25 Msun companion but eccentricity of 0.11, belongs to a recently identified class of eccentric MSPs. PSR J1036-8317 is in an 8 hr binary with a >0.14 Msun companion that is probably a white dwarf. PSR J1946-5403 is in a 3 hr orbit with a >0.02 Msun companion with no evidence of radio eclipses.
The 1.69 ms spin period of PSR J1227-4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270-4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from dec reases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5$sigma$) gamma-ray pulsations after the transition, at the known spin period, using ~1 year of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227-4853 can be fit by one broad peak, which occurs at nearly the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227-4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.
We present flux density measurements and pulse profiles for the millisecond pulsar PSR J2145-0750 spanning 37 to 81 MHz using data obtained from the first station of the Long Wavelength Array. These measurements represent the lowest frequency detecti on of pulsed emission from a millisecond pulsar to date. We find that the pulse profile is similar to that observed at 102 MHz. We also find that the flux density spectrum between ~40 MHz to 5 GHz is suggestive of a break and may be better fit by a model that includes spectral curvature with a rollover around 730 MHz rather than a single power law.
Using the Giant Metrewave Radio Telescope (GMRT) we performed deep observations to search for radio pulsations in the directions of unidentified Fermi Large Area Telescope (LAT) gamma-ray sources. We report the discovery of an eclipsing black-widow m illisecond pulsar, PSR J1544+4937, identified with the un-cataloged gamma-ray source Fermi J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hours compact circular orbit with a very low-mass companion (Mc > 0.017 Msun). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in the eclipse ingress phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Using the radio timing ephemeris we were able to detect gamma-ray pulsations from this pulsar, confirming it as the source powering the gamma-ray emission.
We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of ~4.5-hrs of observ ations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nancay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311-3430, is not radio quiet and provides additional evidence that the radio beaming fraction of millisecond pulsars is very large. The radio detection yields a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulsar as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.
We present a summary of the Fermi Pulsar Search Consortium (PSC), an international collaboration of radio astronomers and members of the Large Area Telescope (LAT) collaboration, whose goal is to organize radio follow-up observations of Fermi pulsars and pulsar candidates among the LAT gamma-ray source population. The PSC includes pulsar observers with expertise using the worlds largest radio telescopes that together cover the full sky. We have performed very deep observations of all 35 pulsars discovered in blind frequency searches of the LAT data, resulting in the discovery of radio pulsations from four of them. We have also searched over 300 LAT gamma-ray sources that do not have strong associations with known gamma-ray emitting source classes and have pulsar-like spectra and variability characteristics. These searches have led to the discovery of a total of 43 new radio millisecond pulsars (MSPs) and four normal pulsars. These discoveries greatly increase the known population of MSPs in the Galactic disk, more than double the known population of so-called `black widow pulsars, and contain many promising candidates for inclusion in pulsar timing arrays.
We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsars (MSPs) from a high Ga lactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<=2 kpc) millisecond pulsars. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power-law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of ~10^{30-31} erg/s are typical of the rare radio MSPs seen in X-rays.
74 - P. S. Ray , M. Kerr , D. Parent 2010
We present precise phase-connected pulse timing solutions for 16 gamma-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124-5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multi-wavelength follow up. For most of the pulsars, we overlay the timing localizations on X-ray images from Swift and describe the status of X-ray counterpart associations. We report glitches measured in PSRs J0007+7303, J1124-5916, and J1813-1246. We analyze a new 20 ks Chandra ACIS observation of PSR J0633+0632 that reveals an arcminute-scale X-ray nebula extending to the south of the pulsar. We were also able to precisely localize the X-ray point source counterpart to the pulsar and find a spectrum that can be described by an absorbed blackbody or neutron star atmosphere with a hard powerlaw component. Another Chandra ACIS image of PSR J1732-3131 reveals a faint X-ray point source at a location consistent with the timing position of the pulsar. Finally, we present a compilation of new and archival searches for radio pulsations from each of the gamma-ray-selected pulsars as well as a new Parkes radio observation of PSR J1124-5916 to establish the gamma-ray to radio phase offset.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا