ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate intrinsic and extrinsic decay of edge magnetoplasmons (EMPs) in graphene quantum Hall (QH) systems by high-frequency electronic measurements. From EMP resonances in disk shaped graphene, we show that the dispersion relation of EMPs is nonlinear due to interactions, giving rise to intrinsic decay of EMP wavepacket. We also identify extrinsic dissipation mechanisms due to interaction with localized states in bulk graphene from the decay time of EMP wavepackets. We indicate that, owing to the unique linear and gapless band structure, EMP dissipation in graphene can be lower than that in GaAs systems.
143 - P. Roulleau , S. Baer , T. Choi 2011
The coupling between a two-level system and its environment leads to decoherence. Within the context of coherent manipulation of electronic or quasiparticle states in nanostructures, it is crucial to understand the sources of decoherence. Here, we st udy the effect of electron-phonon coupling in a graphene and an InAs nanowire double quantum dot. Our measurements reveal oscillations of the double quantum dot current periodic in energy detuning between the two levels. These periodic peaks are more pronounced in the nanowire than in graphene, and disappear when the temperature is increased. We attribute the oscillations to an interference effect between two alternative inelastic decay paths involving acoustic phonons present in these materials. This interpretation predicts the oscillations to wash out when temperature is increased, as observed experimentally.
An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively couple d to each others. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time $tau_phi(T)$ of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found in excellent agreement with our experimental results.
We have determined the finite temperature coherence length of edge states in the Integer Quantum Hall Effect (IQHE) regime. This was realized by measuring the visibility of electronic Mach-Zehnder interferometers of different sizes, at filling factor 2. The visibility shows an exponential decay with the temperature. The characteristic temperature scale is found inversely proportional to the length of the interferometer arm, allowing to define a coherence length $l_phi$. The variations of $l_phi$ with magnetic field are the same for all samples, with a maximum located at the upper end of the quantum hall plateau. Our results provide the first accurate determination of $l_phi$ in the quantum Hall regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا