ترغب بنشر مسار تعليمي؟ اضغط هنا

We aim at analysing systematically the distribution and physical properties of neutral and mildly ionised gas in the Milky Way halo, based on a large absorption-selected data set. Multi-wavelength studies were performed combining optical absorption l ine data of CaII and NaI with follow-up HI 21-cm emission line observations along 408 sight lines towards low- and high-redshift QSOs. We made use of archival optical spectra obtained with UVES/VLT. HI data were extracted from the Effelsberg-Bonn HI survey and the Galactic All-Sky survey. For selected sight lines we obtained deeper follow-up observations using the Effelsberg 100-m telescope. CaII (NaI) halo absorbers at intermediate and high radial velocities are present in 40-55% (20-35%) of the sightlines, depending on the column density threshold chosen. Many halo absorbers show multi-component absorption lines, indicating the presence of sub-structure. In 65% of the cases, absorption is associated with HI 21-cm emission. The CaII (NaI) column density distribution function follows a power-law with a slope of -2.2 (-1.4). Our absorption-selected survey confirms our previous results that the Milky Way halo is filled with a large number of neutral gas structures whose high column density tail represents the population of common HI high- and intermediate-velocity clouds seen in 21-cm observations. We find that CaII/NaI column density ratios in the halo absorbers are typically smaller than those in the Milky Way disc, in the gas in the Magellanic Clouds, and in damped Lyman-alpha systems. The small ratios (prominent in particular in high-velocity components) indicate a lower level of Ca depletion onto dust grains in Milky Way halo absorbers compared to gas in discs and inner regions of galaxies.
We perform a systematic study of physical properties and distribution of neutral and ionised gas in the halo of the Milky Way (MW). Beside the large neutral intermediate- and high-velocity cloud (IVC, HVC) complexes there exists a population of partl y ionised gaseous structures with low-column densities that have a substantial area filling factor. The origin and nature of these structures are still under debate. We analyse the physical parameters of the MW halo gas and the relation to quasar (QSO) metal-absorption line systems at low and high redshifts. For this purpose we combine new HI 21-cm data from the EBHIS and GASS surveys with optical quasar absorption line data to study the filling factor and distribution of these gaseous clouds in the halo at HI densities below 10^19 1/cm^2. This study is important to understand the evolution of the MW in particular and the gas accretion mechanisms of galaxies in general.
213 - N. Ben Bekhti AIfA 2009
Recent studies of the circumgalactic gaseous environment of the Milky Way have concentrated on the distribution, chemical composition, and physical properties of the most massive neutral gas clouds and the highly-ionized halo absorbers. Relatively li ttle effort has been put so far in exploring the circumgalactic neutral and weakly ionized metal absorbers at low HI column densities. With our work we systematically study the distribution and physical properties of neutral and ionised low-column density gas in the halo of the Milky Way. We combine CaII and NaI absorption line measurements with HI 21-cm emission line data. For some of the sight lines high-resolution radio synthesis observations were performed allowing us to study small-scale structures that cannot be resolved with single dish telescopes. In total 177 lines of sight were observed, providing a large absorption-selected data sample for the analysis of IVC and HVC gas in the circumgalactic environment of the Milky Way. The study allows us to compare the observed absorption column density distribution (CDD) of gas in the Milky Way halo with the overall CDD of intervening absorbers towards quasars. The sensitive absorption line analysis enables us to identify the neutral and ionised gaseous structures at low column densities and small angular extent that possibly remain unseen in large 21-cm all-sky surveys. If this gas cover a significant portion of the sky, it possibly has a large influence on the evolution of the Milky Way.
The Warm-Hot Intergalactic Medium (WHIM) arises from shock-heated gas collapsing in large-scale filaments and probably harbours a substantial fraction of the baryons in the local Universe. Absorption-line measurements in the ultraviolet (UV) and in t he X-ray band currently represent the best method to study the WHIM at low redshifts. We here describe the physical properties of the WHIM and the concepts behind WHIM absorption line measurements of H I and high ions such as O VI, O VII, and O VIII in the far-ultraviolet and X-ray band. We review results of recent WHIM absorption line studies carried out with UV and X-ray satellites such as FUSE, HST, Chandra, and XMM-Newton and discuss their implications for our knowledge of the WHIM.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا