ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the evolution of the total star formation (SF) activity, total stellar mass and halo occupation distribution in massive halos by using one of the largest X-ray selected sample of galaxy groups with secure spectroscopic identification in the major blank field surveys (ECDFS, CDFN, COSMOS, AEGIS). We provide an accurate measurement of SFR for the bulk of the star-forming galaxies using very deep mid-infrared Spitzer MIPS and far-infrared Herschel PACS observations. For undetected IR sources, we provide a well-calibrated SFR from SED fitting. We observe a clear evolution in the level of SF activity in galaxy groups. The total SF activity in the high redshift groups (0.5<z<1.1) is higher with respect to the low redshift (0.15<z<0.5) sample at any mass by 0.8+/-0.12 dex. A milder difference (0.35+/-0.1 dex) is observed between the low redshift bin and the groups at z~0. We show that the level of SF activity is declining more rapidly in the more massive halos than in the more common lower mass halos. We do not observe any evolution in the halo occupation distribution and total stellar mass- halo mass relations in groups. The picture emerging from our findings suggests that the galaxy population in the most massive systems is evolving faster than galaxies in lower mass halos, consistently with a halo downsizing scenario.
The most striking feature of the Cosmic Star Formation History (CSFH) of the Universe is a dramatic drop of the star formation (SF) activity, since z~1. In this work we investigate if the very same process of assembly and growth of structures is one of the major drivers of the observed decline. We study the contribution to the CSFH of galaxies in halos of different masses. This is done by studying the total SFR-halo mass-redshift plane from redshift 0 to redshift z~1.6 in a sample of 57 groups and clusters by using the deepest available mid- and far-infrared surveys conducted with Spitzer MIPS and Herschel PACS and SPIRE. Our results show that low mass groups provide a 60-80% contribution to the CSFH at z~1. Such contribution declines faster than the CSFH in the last 8 billion years to less than 10% at z<0.3, where the overall SF activity is sustained by lower mass halos. More massive systems provide only a marginal contribution (<10%) at any epoch. A simplified abundance matching method shows that the large contribution of low mass groups at z~1 is due to a large fraction (>50%) of very massive, highly star forming Main Sequence galaxies. Below z~1 a quenching process must take place in massive halos to cause the observed faster suppression of their SF activity. Such process must be a slow one though, as most of the models implementing a rapid quenching of the SF activity in accreting satellites significantly underpredicts the observed SF level in massive halos at any redshift. Starvation or the transition from cold to hot accretion would provide a quenching timescale of 1 Gyrs more consistent with the observations. Our results suggest a scenario in which, due to the structure formation process, more and more galaxies experience the group environment and, thus, the associated quenching process. This leads to the progressive suppression of their SF activity shaping the CSFH below z~1.
There is now a large consensus that the current epoch of the Cosmic Star Formation History (CSFH) is dominated by low mass galaxies while the most active phase at 1<z<2 is dominated by more massive galaxies, which undergo a faster evolution. Massive galaxies tend to inhabit very massive halos such as galaxy groups and clusters. We aim to understand whether the observed galaxy downsizing could be interpreted as a halo downsizing, whereas the most massive halos, and their galaxy populations, evolve more rapidly than the halos of lower mass. Thus, we study the contribution to the CSFH of galaxies inhabiting group-sized halos. This is done through the study of the evolution of the Infra-Red (IR) luminosity function of group galaxies from redshift 0 to ~1.6. We use a sample of 39 X-ray selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and Hersche PACS. Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute <10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift >~1, the most IR-luminous galaxies (LIRGs and ULIRGs) are preferentially located in groups, and this is consistent with a reversal of the star-formation rate vs .density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z~1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Our results are consistent with a halo downsizing scenario and highlight the significant role of environment quenching in shaping the CSFH.
We investigate the evolution of the star formation rate (SFR)-density relation in the Extended Chandra Deep Field South (ECDFS) and the Great Observatories Origin Deep Survey (GOODS) fields up to z~1.6. In addition to the traditional method, in which the environment is defined according to a statistical measurement of the local galaxy density, we use a dynamical approach, where galaxies are classified according to three different environment regimes: group, filament-like, and field. Both methods show no evidence of a SFR-density reversal. Moreover, group galaxies show a mean SFR lower than other environments up to z~1, while at earlier epochs group and field galaxies exhibit consistent levels of star formation (SF) activity. We find that processes related to a massive dark matter halo must be dominant in the suppression of the SF below z~1, with respect to purely density-related processes. We confirm this finding by studying the distribution of galaxies in different environments with respect to the so-called Main Sequence (MS) of star-forming galaxies. Galaxies in both group and filament-like environments preferentially lie below the MS up to z~1, with group galaxies exhibiting lower levels of star-forming activity at a given mass. At z>1, the star-forming galaxies in groups reside on the MS. Groups exhibit the highest fraction of quiescent galaxies up to z~1, after which group, filament-like, and field environments have a similar mix of galaxy types. We conclude that groups are the most efficient locus for star-formation quenching. Thus, a fundamental difference exists between bound and unbound objects, or between dark matter haloes of different masses.
Star-formation in the galaxy populations of local massive clusters is reduced with respect to field galaxies, and tends to be suppressed in the core region. Indications of a reversal of the star-formation--density relation have been observed in a few z >1.4 clusters. Using deep imaging from 100-500um from PACS and SPIRE onboard Herschel, we investigate the infrared properties of spectroscopic and photo-z cluster members, and of Halpha emitters in XMMU J2235.3-2557, one of the most massive, distant, X-ray selected clusters known. Our analysis is based mostly on fitting of the galaxies spectral energy distribution in the rest-frame 8-1000um. We measure total IR luminosity, deriving star formation rates (SFRs) ranging from 89-463 Msun/yr for 13 galaxies individually detected by Herschel, all located beyond the core region (r >250 kpc). We perform a stacking analysis of nine star-forming members not detected by PACS, yielding a detection with SFR=48 Msun/yr. Using a color criterion based on a star-forming galaxy SED at the cluster redshift we select 41 PACS sources as candidate star-forming cluster members. We characterize a population of highly obscured SF galaxies in the outskirts of XMMU J2235.3-2557. We do not find evidence for a reversal of the SF-density relation in this massive, distant cluster.
By making use of Herschel-PEP observations of the COSMOS and Extended Groth Strip fields, we have estimated the dependence of the clustering properties of FIR-selected sources on their 100um fluxes. Our analysis shows a tendency for the clustering st rength to decrease with limiting fluxes: r0(S100um >8 mJy)~4.3 Mpc and r0(S100um >5 mJy)~5.8 Mpc. These values convert into minimum halo masses Mmin~10^{11.6} Msun for sources brighter than 8 mJy and Mmin~10^{12.4} Msun for S100um > 5 mJy galaxies. We show such an increase of the clustering strength to be due to an intervening population of z~2 sources, which are very strongly clustered and whose relative contribution, equal to about 10% of the total counts at S100um > 2 mJy, rapidly decreases for brighter flux cuts. By removing such a contribution, we find that z <~ 1 FIR galaxies have approximately the same clustering properties, irrespective of their flux level. The above results were then used to investigate the intrinsic dependence on cosmic epoch of the clustering strength of dusty star-forming galaxies between z~0 and z~2.5. In order to remove any bias in the selection process, the adopted sample only includes galaxies observed at the same rest-frame wavelength, lambda~60 um, which have comparable luminosities and therefore star-formation rates (SFR>~100 Msun/yr). Our analysis shows that the same amount of (intense) star forming activity takes place in extremely different environments at the different cosmological epochs. For z<~1 the hosts of such star forming systems are small, Mmin~10^{11} Msun, isolated galaxies. High (z~2) redshift star formation instead seems to uniquely take place in extremely massive/cluster-like halos, Mmin~10^{13.5} Msun, which are associated with the highest peaks of the density fluctuation field at those epochs. (abridged)
We present results from the deepest Herschel-PACS (Photodetector Array Camera and Spectrometer) far-infrared blank field extragalactic survey, obtained by combining observations of the GOODS (Great Observatories Origins Deep Survey) fields from the P ACS Evolutionary Probe (PEP) and GOODS-Herschel key programmes. We describe data reduction and the construction of images and catalogues. In the deepest parts of the GOODS-S field, the catalogues reach 3-sigma depths of 0.9, 0.6 and 1.3 mJy at 70, 100 and 160 um, respectively, and resolve ~75% of the cosmic infrared background at 100um and 160um into individually detected sources. We use these data to estimate the PACS confusion noise, to derive the PACS number counts down to unprecedented depths and to determine the infrared luminosity function of galaxies down to LIR=10^11 Lsun at z~1 and LIR=10^12 Lsun at z~2, respectively. For the infrared luminosity function of galaxies, our deep Herschel far-infrared observations are fundamental because they provide more accurate infrared luminosity estimates than those previously obtained from mid-infrared observations. Maps and source catalogues (>3-sigma) are now publicly released. Combined with the large wealth of multi-wavelength data available for the GOODS fields, these data provide a powerful new tool for studying galaxy evolution over a broad range of redshifts.
We investigate the effect of the high-pass filter data reduction technique on the Herschel PACS PSF and noise of the PACS maps at the 70, 100 and 160 um bands and in medium and fast scan speeds. This branch of the PACS Photometer pipeline is the most used for cosmological observations and for point-source observations.The calibration of the flux loss due to the median removal applied by the PACS pipeline (high-pass filter) is done via dedicated simulations obtained by polluting real PACS timelines with fake sources at different flux levels. The effect of the data reduction parameter settings on the final map noise is done by using selected observations of blank fields with high data redundancy. We show that the running median removal can cause significant flux losses at any flux level. We analyse the advantages and disadvantages of several masking strategies and suggest that a mask based on putting circular patches on prior positions is the best solution to reduce the amount of flux loss. We provide a calibration of the point-source flux loss for several masking strategies in a large range of data reduction parameters, and as a function of the source flux. We also show that, for stacking analysis, the impact of the high-pass filtering effect is to reduce significantly the clustering effect. The analysis of the global noise and noise components of the PACS maps shows that the dominant parameter in determining the final noise is the high-pass filter width. We also provide simple fitting functions to build the error map from the coverage map and to estimate the cross-correlation correction factor in a representative portion of the data reduction parameter space.
Star formation in massive galaxies is quenched at some point during hierarchical mass assembly. To understand where and when the quenching processes takes place, we study the evolution of the total star formation rate per unit total halo mass (Sigma( SFR/M)) in three different mass scales: low mass halos (field galaxies), groups, and clusters, up to a redshift ~1.6. We use deep far-infrared PACS data at 100 and 160 um to accurately estimate the total star formation rate of the Luminous Infrared Galaxy population of 9 clusters with mass ~10^{15} M_{odot}, and 9 groups/poor clusters with mass ~ 5 x 10^{13} M_{odot}. Estimates of the field Sigma(SFR/M) are derived from the literature, by dividing the star formation rate density by the mean comoving matter density of the universe. The field Sigma(SFR/M) increases with redshift up to z~1 and it is constant thereafter. The evolution of the Sigma(SFR/M)-z relation in galaxy systems is much faster than in the field. Up to redshift z~0.2, the field has a higher Sigma(SFR/M) than galaxy groups and galaxy clusters. At higher redshifts, galaxy groups and the field have similar Sigma(SFR/M), while massive clusters have significantly lower Sigma(SFR/M) than both groups and the field. There is a hint of a reversal of the SFR activity vs. environment at z~1.6, where the group Sigma(SFR/M) lies above the field Sigma(SFR/M)-z relation. We discuss possible interpretations of our results in terms of the processes of downsizing, and star-formation quenching.
We use deep 70, 100 and 160 um observations taken with PACS, the Photodetector Array Camera and Spectrometer on board of Herschel, as part of the PACS Evolutionary Probe (PEP) guaranteed time, to study the relation between star formation rate and env ironment at redshift ~ 1 in the GOODS-S and GOODS-N fields. We use the SDSS spectroscopic catalog to build the local analog and study the evolution of the star formation activity dependence on the environment. At z ~ 1 we observe a reversal of the relation between star formation rate and local density, confirming the results based on Spitzer 24 um data. However, due to the high accuracy provided by PACS in measuring the star formation rate also for AGN hosts, we identify in this class of objects the cause for the reversal of the density-SFR relation. Indeed, AGN hosts favor high stellar masses, dense regions and high star formation rates. Without the AGN contribution the relation flattens consistently with respect to the local analog in the same range of star formation rates. As in the local universe, the specific star formation rate anti-correlates with the density. This is due to mass segregation both at high and low redshift. The contribution of AGN hosts does not affect this anti-correlation, since AGN hosts exhibit the same specific star formation rate as star forming galaxies at the same mass. The same global trends and AGN contribution is observed once the relations are studied per morphological type. We study the specific star formation rate vs stellar mass relation in three density regimes. Our data provides an indication that at M/M_{odot} > 10^{11} the mean specific star formation rate tends to be higher at higher density, while the opposite trend is observed in the local SDSS star forming sample.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا