ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the possibility that the heavier CP-even Higgs boson~($H^0$) in the minimal supersymmetric standard model (MSSM) decays invisibly into neutralinos in the light of the recent discovery of the 126 GeV resonance at the CERN Large Hadron Coll ider (LHC). For this purpose we consider the minimal supersymmetric standard model with universal, non-universal and arbitrary boundary conditions on the supersymmetry breaking gaugino mass parameters at the grand unified scale. Typically, scenarios with universal and nonuniversal gaugino masses do not allow invisible decays of the lightest Higgs boson~($h^0$), which is identified with the $126$ GeV resonance, into the lightest neutralinos in the MSSM. With arbitrary gaugino masses at the grand unified scale such an invisible decay is possible. The second lightest Higgs boson can decay into various invisible final states for a considerable region of the MSSM parameter space with arbitrary gaugino masses as well as with the gaugino masses restricted by universal and nonuniversal boundary conditions at the grand unified scale.The possibility of the second lightest Higgs boson of the MSSM decaying into invisible channels is more likely for arbitrary gaugino masses at the grand unified scale. The heavier Higgs boson decay into lighter particles leads to the intriguing possibility that the entire Higgs boson spectrum of the MSSM may be visible at the LHC even if it decays invisibly, during the searches for an extended Higgs boson sector at the LHC. In such a scenario the nonobservation of the extended Higgs sector of the MSSM may carefully be used to rule out regions of the MSSM parameter space at the LHC.
135 - Per Osland 2008
We carry out a detailed analysis of the general two Higgs doublet model with CP violation. We describe two different parametrizations of this model, and then study the Higgs boson masses and the trilinear Higgs couplings for these two parametrization s. Within a rather general model, we find that the trilinear Higgs couplings have a significant dependence on the details of the model, even when the lightest Higgs boson mass is taken to be a fixed parameter. We include radiative corrections in the one-loop effective potential approximation in our analysis of the Higgs boson masses and the Higgs trilinear couplings. The one-loop corrections to the trilinear couplings of the two Higgs doublet model also depend significantly on the details of the model, and can be rather large. We study quantitatively the trilinear Higgs couplings, and show that these couplings are typically several times larger than the corresponding Standard Model trilinear Higgs coupling in some regions of the parameter space. We also briefly discuss the decoupling limit of the two Higgs doublet model.
52 - Rahul Basu 2008
We study the production of the lightest neutralinos in the radiative process $e^+e^- to tildechi^0_1 tildechi^0_1gamma$ in low energy supersymmetric models for the International Linear Collider energies. This includes the minimal supersymmetric stand ard model as well as its extension with an additional chiral Higgs singlet superfield, the nonminimal supersymmetric standard model. We compare and contrast the dependence of the signal cross section on the parameters of the neutralino sector of the minimal and nonminimal supersymmetric standard model. We also consider the background to this process coming from the Standard Model process $e^+e^- to u bar u gamma$, as well as from the radiative production of the scalar partners of the neutrinos (sneutrinos) $e^+e^- to tilde u tilde u^ast gamma$, which can be a background to the radiative neutralino production when the sneutrinos decay invisibly. In low energy supersymmetric models radiative production of the lightest neutralinos may be the only channel to study supersymmetric partners of the Standard Model particles at the first stage of a linear collider, since heavier neutralinos, charginos and sleptons may be too heavy to be pair-produced at a $e^+ e^-$ machine with $sqrt{s} =500GeV$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا