ترغب بنشر مسار تعليمي؟ اضغط هنا

We present multiwavelength imaging observations of PKS 1045-188, 8C 1849+670, and PKS 2216-038, three radio-loud active galactic nuclei from the MOJAVE-Chandra Sample that straddle the Fanaroff-Riley (FR) boundary between low- and high-power jets. Th ese hybrid sources provide an excellent opportunity to study jet emission mechanisms and the influence of the external environment. We used archival VLA observations, and new Hubble and Chandra observations to identify and study the spectral properties of five knots in PKS 1045-188, two knots in 8C 1849+670, and three knots in PKS 2216-038. For the seven X-ray visible knots, we constructed and fit the broadband spectra using synchrotron and inverse Compton/cosmic microwave background (IC/CMB) emission models. In all cases, we found that the lack of detected optical emission ruled out the X-ray emission from the same electron population that produces radio emission. All three sources have high total extended radio power, similar to that of FR II sources. We find this is in good agreement with previously studied hybrid sources, where high-power hybrid sources emit X-rays via IC/CMB and the low-power hybrid sources emit X-rays via synchrotron emission. This supports the idea that it is total radio power rather than FR morphology that determines the X-ray emission mechanism. We found no significant asymmetries in the diffuse X-ray emission surrounding the host galaxies. Sources PKS 1045-188 and 8C 1849+670 show significant differences in their radio and X-ray termination points, which may result from the deceleration of highly relativistic bulk motion.
333 - P. Kharb 2014
We present the results of high resolution VLBI observations at 1.6 and 4.9 GHz of the radio-loud Seyfert galaxy, Mrk 6. These observations are able to detect a compact radio core in this galaxy for the first time. The core has an inverted spectral in dex ($alpha^{1.6}_{4.9}$=+1.0$pm$0.2) and a brightness temperature of $1times10^8$ K. Three distinct radio components which resemble jet elements and/or hot spots, are also detected. The position angles of these elongated jet elements point, not only to a curved jet in Mrk 6, but also towards a connection between the AGN and the kpc-scale radio lobes/bubbles in this galaxy. Firmer constraints on the star formation rate provided by new Herschel observations (SFR $<0.8$ M$_sun$ yr$^{-1}$) make the starburst-wind powered bubble scenario implausible. From plasma speeds obtained via prior Chandra X-ray observations, and ram pressure balance arguments for the ISM and radio bubbles, the north-south bubbles are expected to take $7.5times10^6$ yr to form, and the east-west bubbles $1.4times10^6$ yr. We suggest that the jet axis has changed at least once in Mrk 6 within the last $approx10^7$ yr. A comparison of the nuclear radio-loudness of Mrk 6 and a small sample of Seyfert galaxies with a subset of low-luminosity FRI radio galaxies reveals a continuum in radio properties.
Seyfert galaxies have traditionally been classified as radio-quiet active galactic nuclei. A proper consideration of the nuclear optical emission however proves that a majority of Seyferts are radio-loud. Kpc-scale radio lobes/bubbles are in fact rev ealed in sensitive observations at low radio frequencies of several Seyferts. Through the use of very long baseline interferometry, we have been able to determine the direction of the parsec-scale jets in some of these Seyfert galaxies. The misalignment between the parsec-scale jets and the kpc-scale lobes that is typically observed, is either suggestive of no connection between the two, or the presence of curved jets that power the radio lobes. In this context, we briefly discuss our new low radio frequency GMRT observations of two Seyfert galaxies with lobes.
62 - P. Kharb 2012
(ABRIDGED) We present here the results from new Very Long Baseline Array observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 UGC FRI radio galaxies. New Chandra data of two sources, viz., UGC00408 and UGC08433, are combined with t he Chandra archival data of 13 sources. The 5 GHz observations of ten core-jet sources are polarization-sensitive, while the 1.6 GHz observations constitute second epoch total intensity observations of nine core-only sources. Polarized emission is detected in the jets of seven sources at 5 GHz, but the cores are essentially unpolarized, except in M87. Polarization is detected at the jet edges in several sources, and the inferred magnetic field is primarily aligned with the jet direction. This could be indicative of magnetic field shearing due to jet-medium interaction, or the presence of helical magnetic fields. The jet peak intensity $I_ u$ falls with distance $d$ from the core, following the relation, $I_ upropto d^a$, where $a$ is typically -1.5. Assuming that adiabatic expansion losses are primarily responsible for the jet intensity dimming, two limiting cases are considered: [1] the jet has a constant speed on parsec-scales and is expanding gradually such that the jet radius $rpropto d^0.4$; this expansion is however unobservable in the laterally unresolved jets at 5 GHz, and [2] the jet is cylindrical and is accelerating on parsec-scales. Accelerating parsec-scale jets are consistent with the phenomenon of magnetic driving in Poynting flux dominated jets. Chandra observations of 15 UGC FRIs detect X-ray jets in nine of them. The high frequency of occurrence of X-ray jets in this complete sample suggests that they are a signature of a ubiquitous process in FRI jets.
48 - P. Kharb , M. L. Lister , 2010
We present the results of a study on the 1.4 GHz kpc-scale radio emission in the complete flux density limited MOJAVE sample, comprising 135 radio-loud AGNs. While extended emission is detected in the majority of the sources, about 7% of the sources exhibit only radio core emission. Many BL Lacs exhibit extended radio power and kpc-scale morphology typical of powerful FRII jets, while a substantial number of quasars possess radio powers intermediate between FRIs and FRIIs. This poses challenges to the simple radio-loud unified scheme, which links BL Lacs to FRIs and quasars to FRIIs. We find a significant correlation between extended radio emission and pc-scale jet speeds: the more radio powerful sources possess faster jets. This indicates that the 1.4 GHz (or low frequency) radio emission is indeed related to jet kinetic power. Various properties such as extended radio power and apparent pc-scale jet speeds vary smoothly between different blazar subclasses, suggesting that, at least in terms of radio jet properties, the distinction between quasars and BL Lac objects, at an emission-line equivalent width of 5 Angstrom is essentially an arbitrary one. Based on the assumption that the extended radio luminosity is affected by the kpc-scale environment, we define the ratio of extended radio power to absolute optical magnitude as a proxy for environmental effects. Trends with this parameter suggest that the pc-scale jet speeds and the pc-to-kpc jet misalignments are not affected by the large-scale environment, but are more likely to depend upon factors intrinsic to the AGN, or its local pc-scale environment. We suggest that some of the extremely misaligned MOJAVE blazar jets could be hybrid morphology sources, with an FRI jet on one side and an FRII jet on the other. (Abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا