ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive several bounds on fidelity between quantum states. In particular we show that fidelity is bounded from above by a simple to compute quantity we call super--fidelity. It is analogous to another quantity called sub--fidelity. For any two stat es of a two--dimensional quantum system (N=2) all three quantities coincide. We demonstrate that sub-- and super--fidelity are concave functions. We also show that super--fidelity is super--multiplicative while sub--fidelity is sub--multiplicative and design feasible schemes to measure these quantities in an experiment. Super--fidelity can be used to define a distance between quantum states. With respect to this metric the set of quantum states forms a part of a $N^2-1$ dimensional hypersphere.
We analyse stability of the four-dimensional Kitaev model - a candidate for scalable quantum memory - in finite temperature within the weak coupling Markovian limit. It is shown that, below a critical temperature, certain topological qubit observable s X and Z possess relaxation times exponentially long in the size of the system. Their construction involves polynomial in systems size algorithm which uses as an input the results of measurements performed on all individual spins. We also discuss the drawbacks of such candidate for quantum memory and mention the implications of the stability of qubit for statistical mechanics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا