ﻻ يوجد ملخص باللغة العربية
We analyse stability of the four-dimensional Kitaev model - a candidate for scalable quantum memory - in finite temperature within the weak coupling Markovian limit. It is shown that, below a critical temperature, certain topological qubit observables X and Z possess relaxation times exponentially long in the size of the system. Their construction involves polynomial in systems size algorithm which uses as an input the results of measurements performed on all individual spins. We also discuss the drawbacks of such candidate for quantum memory and mention the implications of the stability of qubit for statistical mechanics.
The thermalization process of the 2D Kitaev model is studied within the Markovian weak coupling approximation. It is shown that its largest relaxation time is bounded from above by a constant independent of the system size and proportional to $exp(2D
Kitaevs quantum double models in 2D provide some of the most commonly studied examples of topological quantum order. In particular, the ground space is thought to yield a quantum error-correcting code. We offer an explicit proof that this is the case
A quantum thermal transistor is designed by the strong coupling between one qubit and one qutrit which are in contact with three heat baths with different temperatures. The thermal behavior is analyzed based on the master equation by both the numeric
We study the energy level crossings of the states and thermal fidelity for a two-qubit system in the presence of a transverse and inhomogeneous magnetic field. It is shown clearly the effects of the anisotropic factor of the magnetic field through th
Many physical systems considered promising qubit candidates are not, in fact, two-level systems. Such systems can leak out of the preferred computational states, leading to errors on any qubits that interact with leaked qubits. Without specific metho