ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a variational approximation to the microscopic dynamics of rare conformational transitions of macromolecules. Within this framework it is possible to simulate on a small computer cluster reactions as complex as protein folding, using sta te of the art all-atom force fields in explicit solvent. We test this method against molecular dynamics (MD) simulations of the folding of an alpha- and a beta-protein performed with the same all-atom force field on the Anton supercomputer. We find that our approach yields results consistent with those of MD simulations, at a computational cost orders of magnitude smaller.
We introduce an atomistic approach to the dissipative quantum dynamics of charged or neutral excitations propagating through macromolecular systems. Using the Feynman-Vernon path integral formalism, we analytically trace out from the density matrix t he atomic coordinates and the heat bath degrees of freedom. This way we obtain an effective field theory which describes the real-time evolution of the quantum excitation and is fully consistent with the fluctuation-dissipation relation. The main advantage of the field-theoretic approach is that it allows to avoid using the Keldysh contour formulation. This simplification makes it straightforward to derive Feynman diagrams to analytically compute the effects of the interaction of the propagating quantum excitation with the heat bath and with the molecular atomic vibrations. For illustration purposes, we apply this formalism to investigate the loss of quantum coherence of holes propagating through a poly(3-alkylthiophene) polymer
62 - P. Faccioli , F. Pederiva 2012
We introduce a rigorous method to microscopically compute the observables which characterize the thermodynamics and kinetics of rare macromolecular transitions for which it is possible to identify a priori a slow reaction coordinate. In order to samp le the ensemble of statistically significant reaction pathways, we define a biased molecular dynamics (MD) in which barrier-crossing transitions are accelerated without introducing any unphysical external force. In contrast to other biased MD methods, in the present approach the systematic errors which are generated in order to accelerate the transition can be analytically calculated and therefore can be corrected for. This allows for a computationally efficient reconstruction of the free-energy profile as a function of the reaction coordinate and for the calculation of the corresponding diffusion coefficient. The transition path time can then be readily evaluated within the Dominant Reaction Pathways (DRP) approach. We illustrate and test this method by characterizing a thermally activated transition on a two-dimensional energy surface and the folding of a small protein fragment within a coarse-grained model.
Stochastic simulations of coarse-grained protein models are used to investigate the propensity to form knots in early stages of protein folding. The study is carried out comparatively for two homologous carbamoyltransferases, a natively-knotted N-ace tylornithine carbamoyltransferase (AOTCase) and an unknotted ornithine carbamoyltransferase (OTCase). In addition, two different sets of pairwise amino acid interactions are considered: one promoting exclusively native interactions, and the other additionally including non-native quasi-chemical and electrostatic interactions. With the former model neither protein show a propensity to form knots. With the additional non-native interactions, knotting propensity remains negligible for the natively-unknotted OTCase while for AOTCase it is much enhanced. Analysis of the trajectories suggests that the different entanglement of the two transcarbamylases follows from the tendency of the C-terminal to point away from (for OTCase) or approach and eventually thread (for AOTCase) other regions of partly-folded protein. The analysis of the OTCase/AOTCase pair clarifies that natively-knotted proteins can spontaneously knot during early folding stages and that non-native sequence-dependent interactions are important for promoting and disfavoring early knotting events.
The dominant reaction pathway (DRP) is a rigorous framework to microscopically compute the most probable trajectories, in non-equilibrium transitions. In the low-temperature regime, such dominant pathways encode the information about the reaction mec hanism and can be used to estimate non-equilibrium averages of arbitrary observables. On the other hand, at sufficiently high temperatures, the stochastic fluctuations around the dominant paths become important and have to be taken into account. In this work, we develop a technique to systematically include the effects of such stochastic fluctuations, to order k_B T. This method is used to compute the probability for a transition to take place through a specific reaction channel and to evaluate the reaction rate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا