ترغب بنشر مسار تعليمي؟ اضغط هنا

We compare evolved stellar models, which match Procyons mass and position in the HR diagram, to current ground-based asteroseismic observations. Diffusion of helium and metals along with two conventional core overshoot descriptions and the Kuhfuss no nlocal theory of convection are considered. We establish that one of the two published asteroseismic data reductions for Procyon, which mainly differ in their identification of even versus odd l-values, is a significantly more probable and self-consistent match to our models than the other. The most probable models according to our Bayesian analysis have evolved to just short of turnoff, still retaining a hydrogen convective core. Our most probable models include Y and Z diffusion and have conventional core overshoot between 0.9 and 1.5 pressure scale heights, which increases the outer radius of the convective core by between 22% to 28%, respectively. We discuss the significance of this comparatively higher than expected core overshoot amount in terms of internal mixing during evolution. The parameters of our most probable models are similar regardless of whether adiabatic or nonadiabatic model p-mode frequencies are compared to the observations, although, the Bayesian probabilities are greater when the nonadiabatic model frequencies are used. All the most probable models (with or without core overshoot, adiabatic or nonadiabatic model frequencies, diffusion or no diffusion, including priors for the observed HRD location and mass or not) have masses that are within one sigma of the observed mass 1.497+/-0.037 Msun.
A long-standing issue in the theory of low mass stars is the discrepancy between predicted and observed radii and effective temperatures. In spite of the increasing availability of very precise radius determinations from eclipsing binaries and interf erometric measurements of radii of single stars, there is no unanimous consensus on the extent (or even the existence) of the discrepancy and on its connection with other stellar properties (e.g. metallicity, magnetic activity). We investigate the radius discrepancy phenomenon using the best data currently available (accuracy about 5%). We have constructed a grid of stellar models covering the entire range of low mass stars (0.1-1.25 M_sun) and various choices of the metallicity and of the mixing length parameter alpha. We used an improved version of the Yale Rotational stellar Evolution Code (YREC), implementing surface boundary conditions based on the most up-to-date PHOENIX atmosphere models. Our models are in good agreement with others in the literature and improve and extend the low mass end of the Yale-Yonsei isochrones. Our calculations include rotation-related quantities, such as moments of inertia and convective turnover time scales, useful in studies of magnetic activity and rotational evolution of solar-like stars. Consistently with previous works, we find that both binaries and single stars have radii inflated by about 3% with respect to the theoretical models; among binaries, the components of short orbital period systems are found to be the most deviant. We conclude that both binaries and single stars are comparably affected by the radius discrepancy phenomenon.
The GIII red giant star epsilon Oph has been found to exhibit several modes of oscillation by the MOST mission. We interpret the observed frequencies of oscillation in terms of theoretical radial p-mode frequencies of stellar models. Evolutionary mod els of this star, in both shell H-burning and core He-burning phases of evolution, are constructed using as constraints a combination of measurements from classical ground-based observations (for luminosity, temperature, and chemical composition) and seismic observations from MOST. Radial frequencies of models in either evolutionary phase can reproduce the observed frequency spectrum of epsilon Oph almost equally well. The best-fit models indicate a mass in the range of 1.85 +/- 0.05 Msun with radius of 10.55 +/- 0.15 Rsun. We also obtain an independent estimate of the radius of epsilon Oph using high accuracy interferometric observations in the infrared K band, using the CHARA/FLUOR instrument. The measured limb darkened disk angular diameter of epsilon Oph is 2.961 +/- 0.007 mas. Together with the Hipparcos parallax, this translates into a photospheric radius of 10.39 +/- 0.07 Rsun. The radius obtained from the asteroseismic analysis matches the interferometric value quite closely even though the radius was not constrained during the modelling.
We describe a web-based cgi calculator for constructing synthetic color-magnitude diagrams for a simple stellar population (SSP) using the Yonsei-Yale (YY) isochrone data base. This calculator is designed to be used interactively. It creates quick lo ok CMD displays in (B-V) and (V-I) colors. Stochastic effects on the CMDs are included. Output in tabular form is also provided for special purpose displays, or for combining the CMDs of different stellar populations. This research tool has applications in studies of the stellar content of our Galaxy and external systems. It provides an easy way to interpret the CMDs in resolved stellar populations. It offers the means to explore the dependence of the integrated properties of unresolved stellar systems on stellar parameters (ages, chemical composition, binarity) and on the characteristics of their parent population (IMF slope and mass range).
The stellar evolution code YREC is outlined with emphasis on its applications to helio- and asteroseismology. The procedure for calculating calibrated solar and stellar models is described. Other features of the code such as a non-local treatment of convective core overshoot, and the implementation of a parametrized description of turbulence in stellar models, are considered in some detail. The code has been extensively used for other astrophysical applications, some of which are briefly mentioned at the end of the paper.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا