ترغب بنشر مسار تعليمي؟ اضغط هنا

A cgi synthetic CMD calculator for the YY Isochrones

51   0   0.0 ( 0 )
 نشر من قبل Shanil N. Virani
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a web-based cgi calculator for constructing synthetic color-magnitude diagrams for a simple stellar population (SSP) using the Yonsei-Yale (YY) isochrone data base. This calculator is designed to be used interactively. It creates quick look CMD displays in (B-V) and (V-I) colors. Stochastic effects on the CMDs are included. Output in tabular form is also provided for special purpose displays, or for combining the CMDs of different stellar populations. This research tool has applications in studies of the stellar content of our Galaxy and external systems. It provides an easy way to interpret the CMDs in resolved stellar populations. It offers the means to explore the dependence of the integrated properties of unresolved stellar systems on stellar parameters (ages, chemical composition, binarity) and on the characteristics of their parent population (IMF slope and mass range).

قيم البحث

اقرأ أيضاً

Exoplanet imaging requires super polished off-axis parabolas (OAP) with the utmost surface quality. In this paper we describe an innovative manufacturing process combining 3D printing and stress polishing, to create a warping harness capable of produ cing any off axis parabola profile with a single actuator. The warping harness is manufactured by 3D printing. This method will be applied to the production of the WFIRST coronagraphs off axis parabolas. The evolution of the warping harness design is presented, starting from a ring warping harness generating astigmatism, to an innovative thickness distribution harness optimised to generate an off axis parabola shape. Several design options are available for the prototyping phase, with their advantages and disadvantages which will be discussed.
We have calculated theoretical isochrones for the photometric Delta a system to derive astrophysical parameters such as the age, reddening and distance modulus for open clusters. The Delta a system samples the flux depression at 520 nm which is highl y efficient to detect chemically peculiar (CP) objects of the upper main sequence. The evolutionary status of CP stars is still a matter of debate and very important to test, for example, the dynamo and diffusion theories. In fact, the dynamo or fossil origin of the magnetic fields present in this kind of stars it still not clear. Using the stellar evolutionary models by Claret (1995), a grid of isochrones with different initial chemical compositions for the Delta a system was generated. The published data of 23 open clusters were used to fit these isochrones with astrophysical parameters (age, reddening and distance modulus) from the literature. As an additional test, isochrones with the same parameters for Johnson UBV data of these open clusters were also considered. The fits show a good agreement between the observations and the theoretical grid. We find that the accuracy of fitting isochrones to Delta a data without the knowledge of the cluster parameters is between 5 and 15%.
419 - T. Birkandan 2017
We present a Maple11+GRTensorII based symbolic calculator for instanton metrics using Newman-Penrose formalism. Gravitational instantons are exact solutions of Einsteins vacuum field equations with Euclidean signature. The Newman-Penrose formalism, w hich supplies a toolbox for studying the exact solutions of Einsteins field equations, was adopted to the instanton case and our code translates it for the computational use.
The Simons Observatory (SO) is an upcoming experiment that will study temperature and polarization fluctuations in the cosmic microwave background (CMB) from the Atacama Desert in Chile. SO will field both a large aperture telescope (LAT) and an arra y of small aperture telescopes (SATs) that will observe in six bands with center frequencies spanning from 27 to 270~GHz. Key considerations during the SO design phase are vast, including the number of cameras per telescope, focal plane magnification and pixel density, in-band optical power and camera throughput, detector parameter tolerances, and scan strategy optimization. To inform the SO design in a rapid, organized, and traceable manner, we have created a Python-based sensitivity calculator with several state-of-the-art features, including detector-to-detector optical white-noise correlations, a handling of simulated and measured bandpasses, and propagation of low-level parameter uncertainties to uncertainty in on-sky noise performance. We discuss the mathematics of the sensitivity calculation, the calculators object-oriented structure and key features, how it has informed the design of SO, and how it can enhance instrument design in the broader CMB community, particularly for CMB-S4.
Operating in an unprecedented contrast regime ($10^{-7}$ to $10^{-9}$), the Roman Coronagraph Instrument (CGI) will serve as a pathfinder for key technologies needed for future Earth-finding missions. The Roman Exoplanet Imaging Data Challenge (Roman EIDC) was a community engagement effort that tasked participants with extracting exoplanets and their orbits for a 47 UMa-like target star, given: (1) 15 years of simulated precursor radial velocity (RV) data, and (2) six epochs of simulated imaging taken over the course of the Roman mission. The Roman EIDC simulated images include 4 epochs with CGIs Hybrid Lyot Coronagraph (HLC) plus 2 epochs with a starshade (SS) assumed to arrive as part of a Starshade Rendezvous later in the mission. Here, we focus on our in-house analysis of the outermost planet, for which the starshades higher throughput and lower noise floor present a factor of ~4 improvement in signal-to-noise ratio over the narrow-field HLC. We find that, although the RV detection was marginal, the precursor RV data enable the mass and orbit to be constrained with only 2 epochs of starshade imaging. Including the HLC images in the analysis results in improved measurements over RV + SS alone, with the greatest gains resulting from images taken at epochs near maximum elongation. Combining the two epochs of SS imaging with the RV + HLC data resulted in a factor of ~2 better orbit and mass determinations over RV + HLC alone. The Roman CGI, combined with precursor RV data and later mission SS imaging, form a powerful trifecta in detecting exoplanets and determining their masses, albedos, and system configurations. While the Roman CGI will break new scientific and technological ground with direct imaging of giant exoplanets within ~5 AU of V~5 and brighter stars, a Roman Starshade Rendezvous mission would additionally enable the detection of planets out to ~8 AU in those systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا