ترغب بنشر مسار تعليمي؟ اضغط هنا

While being invented for precision measurement of single atomic transitions, frequency combs have also become a versatile tool for broadband spectroscopy in the last years. In this paper we present a novel and simple approach for broadband spectrosco py, combining the accuracy of an optical fiber-laser-based frequency comb with the ease-of-use of a tunable external cavity diode laser. This scheme enables broadband and fast spectroscopy of microresonator modes and allows for precise measurements of their dispersion, which is an important precondition for broadband optical frequency comb generation that has recently been demonstrated in these devices. Moreover, we find excellent agreement of measured microresonator dispersion with predicted values from finite element simulations and we show that tailoring microresonator dispersion can be achieved by adjusting their geometrical properties.
We demonstrate control and stabilization of an optical frequency comb generated by four-wave mixing in a monolithic microresonator with a mode spacing in the microwave regime (86 GHz). The comb parameters (mode spacing and offset frequency) are contr olled via the power and the frequency of the pump laser, which constitutes one of the comb modes. Furthermore, generation of a microwave beat note at the combs mode spacing frequency is presented, enabling direct stabilization to a microwave frequency standard.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا