ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion

487   0   0.0 ( 0 )
 نشر من قبل Pascal Del'Haye
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While being invented for precision measurement of single atomic transitions, frequency combs have also become a versatile tool for broadband spectroscopy in the last years. In this paper we present a novel and simple approach for broadband spectroscopy, combining the accuracy of an optical fiber-laser-based frequency comb with the ease-of-use of a tunable external cavity diode laser. This scheme enables broadband and fast spectroscopy of microresonator modes and allows for precise measurements of their dispersion, which is an important precondition for broadband optical frequency comb generation that has recently been demonstrated in these devices. Moreover, we find excellent agreement of measured microresonator dispersion with predicted values from finite element simulations and we show that tailoring microresonator dispersion can be achieved by adjusting their geometrical properties.

قيم البحث

اقرأ أيضاً

We demonstrate simple optical frequency combs based on semiconductor quantum well laser diodes. The frequency comb spectrum can be tailored by choice of material properties and quantum-well widths, providing spectral flexibility. Finally, we demonstr ate the mutual coherence of these devices by using two frequency combs on the same device to generate a radio-frequency dual comb spectrum.
123 - Michael T. Murphy 2012
Precise astronomical spectroscopic analyses routinely assume that individual pixels in charge-coupled devices (CCDs) have uniform sensitivity to photons. Intra-pixel sensitivity (IPS) variations may already cause small systematic errors in, for examp le, studies of extra-solar planets via stellar radial velocities and cosmological variability in fundamental constants via quasar spectroscopy, but future experiments requiring velocity precisions approaching ~1 cm/s will be more strongly affected. Laser frequency combs have been shown to provide highly precise wavelength calibration for astronomical spectrographs, but here we show that they can also be used to measure IPS variations in astronomical CCDs in situ. We successfully tested a laser frequency comb system on the Ultra-High Resolution Facility spectrograph at the Anglo-Australian Telescope. By modelling the 2-dimensional comb signal recorded in a single CCD exposure, we find that the average IPS deviates by <8 per cent if it is assumed to vary symmetrically about the pixel centre. We also demonstrate that series of comb exposures with absolutely known offsets between them can yield tighter constraints on symmetric IPS variations from ~100 pixels. We discuss measurement of asymmetric IPS variations and absolute wavelength calibration of astronomical spectrographs and CCDs using frequency combs.
117 - Hanzhong Wu , Jun Ke , Panpan Wang 2021
In this work, we describe an updated version of single arm locking, and the noise amplification due to the nulls can be flexibly restricted with the help of optical frequency comb. We show that, the laser phase noise can be divided by a specific fact or with optical frequency comb as the bridge. The analytical results indicate that, the peaks in the science band have been greatly reduced. The performance of the noise suppression shows that the total noise after arm locking can well satisfy the requirement of time delay interferometry, even with the free-running laser source. We also estimate the frequency pulling characteristics of the updated single arm locking, and the results suggest that the pulling rate can be tolerated, without the risk of mode hopping. Arm locking will be a valuable solution for the noise reduction in the space-borne GW detectors. We demonstrate that, with the precise control of the returned laser phase noise, the noise amplification in the science band can be efficiently suppressed based on the updated single arm locking. Not only our method allows the suppression of the peaks, the high gain, low pulling rate, it can also serve for full year, without the potential risk of locking failure due to the arm length mismatch. We finally discuss the unified demonstration of the updated single arm locking, where both the local and the returned laser phase noises can be tuned to generate the expected arm-locking sensor actually. Our work could provide a powerful method for the arm locking in the future space-borne GW detectors.
We describe a Yb-fiber based laser comb, with a focus on the relationship between net-cavity dispersion and the frequency noise on the comb. While tuning the net cavity dispersion from anomalous to normal, we measure the amplitude noise (RIN), offset frequency (f_CEO) linewidth, and the resulting frequency noise spectrum on f_CEO. We find that the laser operating at zero net-cavity dispersion has many advantages, including an approximately 100x reduction in free-running f_CEO linewidth and frequency noise power spectral density between laser operation at normal and zero dispersion. In this latter regime, we demonstrate a phase-locked f_CEO beat with low residual noise.
Microresonator-based soliton frequency combs - microcombs - have recently emerged to offer low-noise, photonic-chip sources for optical measurements. Owing to nonlinear-optical physics, microcombs can be built with various materials and tuned or stab ilized with a consistent framework. Some applications require phase stabilization, including optical-frequency synthesis and measurements, optical-frequency division, and optical clocks. Partially stabilized microcombs can also benefit applications, such as oscillators, ranging, dual-comb spectroscopy, wavelength calibration, and optical communications. Broad optical bandwidth, brightness, coherence, and frequency stability have made frequency-comb sources important for studying comb-matter interactions with atoms and molecules. Here, we explore direct microcomb atomic spectroscopy, utilizing a cascaded, two-photon 1529-nm atomic transition of rubidium. Both the microcomb and the atomic vapor are implemented with planar fabrication techniques to support integration. By fine and simultaneous control of the repetition rate and carrier-envelope-offset frequency of the soliton microcomb, we obtain direct sub-Doppler and hyperfine spectroscopy of the $4^2D_{5/2}$ manifold. Moreover, the entire set of microcomb modes are stabilized to this atomic transition, yielding absolute optical-frequency fluctuations of the microcomb at the kilohertz-level over a few seconds and < 1 MHz day-to-day accuracy. Our work demonstrates atomic spectroscopy with microcombs and provides a rubidium-stabilized microcomb laser source, operating across the 1550 nm band for sensing, dimensional metrology, and communication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا