ترغب بنشر مسار تعليمي؟ اضغط هنا

The predicted orbital period histogram of an sdB population is bimodal with a peak at short (< 10 days) and long (> 250 days) periods. Observationally, there are many short-period sdB systems known, but only very few long-period sdB binaries are iden tified. As these predictions are based on poorly understood binary interaction processes, it is of prime importance to confront the predictions to observational data. In this contribution we aim to determine the absolute dimensions of the long-period sdB+MS binary system PG1104+243. High-resolution spectroscopy time-series were obtained with HERMES at the Mercator telescope at La Palma, and analyzed to obtain radial velocities of both components. Photometry from the literature was used to construct the spectral energy distribution (SED) of the binary. Atmosphere models were used to fit this SED and determine the surface gravity and temperature of both components. The gravitational redshift provided an independent confirmation of the surface gravity of the sdB component. An orbital period of 753 +- 3 d and a mass ratio of q = 0.637 +- 0.015 were found from the RV-curves. The sdB component has an effective temperature of Teff = 33500 +- 1200 K and a surface gravity of logg = 5.84 +- 0.08 dex, while the cool companion is found to be a G-type star with Teff = 5930 +- 160 K and logg = 4.29 +- 0.05 dex. Assuming a canonical mass of Msdb = 0.47 Msun, the MS component has a mass of 0.74 +- 0.07 Msun, and its Teff corresponds to what is expected for a terminal age main-sequence star with sub-solar metalicity. PG1104+243 is the first long-period sdB binary in which accurate physical parameters of both components could be determined, and the first sdB binary in which the gravitational redshift is measured. Furthermore, PG1104+243 is the first sdB+MS system that shows consistent evidence for being formed through stable Roche-lobe overflow.
Our comprehension of stellar evolution on the AGB still faces many difficulties. To improve on this, a quantified understanding of large-amplitude pulsator atmospheres and interpretation in terms of their fundamental stellar parameters are essential. We wish to evaluate the effectiveness of the recently released CODEX dynamical model atmospheres in representing M-type Mira variables through a confrontation with the time-resolved spectro-photometric and interferometric PTI data set of TU And. We calibrated the interferometric K-band time series to high precision. This results in 50 nights of observations, covering 8 subsequent pulsation cycles. At each phase, the flux at 2.2$mu$m is obtained, along with the spectral shape and visibility points in 5 channels across the K-band. We compared the data set to the relevant dynamical, self-excited CODEX models. Both spectrum and visibilities are consistently reproduced at visual minimum phases. Near maximum, our observations show that the current models predict a photosphere that is too compact and hot, and we find that the extended atmosphere lacks H2O opacity. Since coverage in model parameter space is currently poor, more models are needed to make firm conclusions on the cause of the discrepancies. We argue that for TU And, the discrepancy could be lifted by adopting a lower value of the mixing length parameter combined with an increase in the stellar mass and/or a decrease in metallicity, but this requires the release of an extended model grid.
Six O-type stars were observed continuously by the CoRoT satellite during a 34.3-day run. The unprecedented quality of the data allows us to detect even low-amplitude stellar pulsations in some of these stars (HD 46202 and the binaries HD 46149 and P lasketts star). These cover both opacity-driven modes and solar-like stochastic oscillations, both of importance to the asteroseismological modelling of O stars. Additional effects can be seen in the CoRoT light curves, such as binarity and rotational modulation. Some of the hottest O-type stars (HD 46223, HD 46150 and HD 46966) are dominated by the presence of red-noise: we speculate that this is related to a sub-surface convection zone.
We search for new variable B-type pulsators in the CoRoT data assembled primarily for planet detection, as part of CoRoTs Additional Programme. We aim to explore the properties of newly discovered B-type pulsators from the uninterrupted CoRoT space-b ased photometry and to compare them with known members of the Beta Cep and slowly pulsating B star (SPB) classes. We developed automated data analysis tools that include algorithms for jump correction, light-curve detrending, frequency detection, frequency combination search, and for frequency and period spacing searches. Besides numerous new, classical, slowly pulsating B stars, we find evidence for a new class of low-amplitude B-type pulsators between the SPB and Delta Sct instability strips, with a very broad range of frequencies and low amplitudes, as well as several slowly pulsating B stars with residual excess power at frequencies typically a factor three above their expected g-mode frequencies. The frequency data we obtained for numerous new B-type pulsators represent an appropriate starting point for further theoretical analyses of these stars, once their effective temperature, gravity, rotation velocity, and abundances will be derived spectroscopically in the framework of an ongoing FLAMES survey at the VLT.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا