ترغب بنشر مسار تعليمي؟ اضغط هنا

162 - P. D. Gujrati 2012
The status of heat and work in nonequilibrium thermodynamics is quite confusing and non-unique at present with conflicting interpretations even after a long history of the first law in terms of exchange heat and work, and is far from settled. Moreove r, the exchange quantities lack certain symmetry. By generalizing the traditional concept to also include their time-dependent irreversible components allows us to express the first law in a symmetric form dE(t)= dQ(t)-dW(t) in which dQ(t) and work dW(t) appear on an equal footing and possess the symmetry. We prove that irreversible work turns into irreversible heat. Statistical analysis in terms of microstate probabilities p_{i}(t) uniquely identifies dW(t) as isentropic and dQ(t) as isometric (see text) change in dE(t); such a clear separation does not occur for exchange quantities. Hence, our new formulation of the first law provides tremendous advantages and results in an extremely useful formulation of non-equilibrium thermodynamics, as we have shown recently. We prove that an adiabatic process does not alter p_{i}. All these results remain valid no matter how far the system is out of equilibrium. When the system is in internal equilibrium, dQ(t)equivT(t)dS(t) in terms of the instantaneous temperature T(t) of the system, which is reminiscent of equilibrium. We demonstrate that p_{i}(t) has a form very different from that in equilibrium. The first and second laws are no longer independent so that we need only one law, which is again reminiscent of equilibrium. The traditional formulas like the Clausius inequality {oint}d_{e}Q(t)/T_{0}<0, etc. become equalities {oint}dQ(t)/T(t)equiv0, etc, a quite remarkable but unexpected result in view of irreversibility. We determine the irreversible components in two simple cases to show the usefulness of our approach; here, the traditional formulation is of no use.
105 - P. D. Gujrati 2011
By generalizing the traditional concept of heat dQ and work dW to also include their time-dependent irreversible components d_{i}Q and d_{i}W allows us to express them in terms of the instantaneous internal temperature T(t) and pressure P(t), whereas the conventional form uses the constant values T_{0} and P_{0} of the medium. This results in an extremely useful formulation of non-equilibrium thermodynamics so that the first law turns into the Gibbs fundamental relation and the Clausius inequality becomes an equality ointdQ(t)/T(t)equiv0 in all cases, a quite remarkable but unexpected result. We determine the irreversible components d_{i}Qequivd_{i}W and discuss how they can be determined to obtain the generalized dW(t) and dQ(t).
53 - P. D. Gujrati 2009
We use the cell model to justify the use of a lattice model to study the ideal glass transition. Based on empirical evidence and several previous exact calculations, we hypothesize that there exists an energy gap between the lowest possible energy of a glass (the ideal glass IG) and the crystal (CR). The gap is due to the presence of strongly correlated excitations with respect to the ideal CR; thus, one can treat IG as a highly defective crystal. We argue that an excitation in IG requires energy that increases logarithmically with the size of the system; as a consequence, we prove that IG must emerge at a positive temperature T_{K}. We propose an antiferromagnetic Ising model on a lattice to model liquid-crystal transition in a simple fluid or a binary mixture, which is then solved exactly on a recursive (Husimi) lattice to investigate the ideal glass transition, the nature of defects in the supercooled liquid and CR analytically, and the effects of competing interactions on the glass transition. The calculation establishes the gap. The lattice entropy of the supercooled liquid vanishes at a positive temperature T_{K}>0, where IG emerges but where CR has a positive entropy. The macrostate IG is in a particular and unique disordered microstate at T_{K}, just as the ideal CR is in a perfectly ordered microstate at absolute zero. This explains why it is possible for CR to have a higher entropy at T_{K} than IG. The demonstration here of an entropy crisis in monatomic systems along with previously known results strongly suggests that the entropy crisis first noted by Kauzmann and demonstrated by Gibbs and DiMarzio in long polymers appears to be ubiquitous in all supercooled liquids.
107 - P. D. Gujrati 2009
Starting from the second law of thermodynamics applied to an isolated system consisting of the system surrounded by an extremely large medium, we formulate a general non-equilibrium thermodynamic description of the system when it is out of equilibriu m. We then apply it to study the structural relaxation in glasses and establish the phenomenology behind the concept of the fictive temperature and of the empirical Tool-Narayanaswamy equation on firmer theoretical foundation.
89 - P. D. Gujrati 2009
We revisit the controversy, discussed recently by Goldstein in this journal[J. Chem. Phys. 128,154510 (2008)], whether the residual entropy is real or fictional. It is shown that the residual entropy loss conjecture (ELC) at the glass transition, whi ch results in a discontinuous entropy violates many fundamental principles of classical thermodynamics, and also contradicts some experimental facts. Assuming, as is common in the field, that glasses are in internal equilibrium, we show that the continuity of enthalpy and volume at the glass transition require the continuity of the Gibbs free energy and the entropy, which contradicts ELC. It is then argued that ELC is founded on an incorrect understanding of what it means for a glass to be kinetically trapped in a basin and of the concept of probability and entropy. Once this misunderstanding is corrected in our approach by the proper identification of entropy as the ensemble entropy, which is in accordance with the principle of reproducibility (see Sect. II), it follows immediately that the residual entropy does not disappear in a kinetically frozen glassy state and all the violations of thermodynamics disappear. We show that the temporal definition of entropy over finite times does not make sense for glasses as it is not unique. There is no loss of ergodicity and causality, contrary to some recent claims.
61 - P. D. Gujrati 2008
We show that Poincare recurrence does not mean that the entropy will eventually decrease, contrary to the claim of Zermelo, and that the probabilitistic origin in statistical physics must lie in the external noise, and not the preparation of the system.
55 - P. D. Gujrati 2008
The irreversibility in a statistical system is traced to its probabilistic evolution, and the molecular chaos assumption is not its unique consequence as is commonly believed. Under the assumption that the rate of change of the each microstate probab ility vanishes only as time diverges, we prove that the entropy of a system at constant energy cannot decrease with time.
We consider a lattice model of a mixture of repulsive, attractive, or neutral monodisperse star (species A) and linear (species B) polymers with a third monomeric species C, which may represent free volume. The mixture is next to a hard, infinite pla te whose interactions with A and C can be attractive, repulsive, or neutral. These two interactions are the only parameters necessary to specify the effect of the surface on all three components. We numerically study monomer density profiles using the method of Gujrati and Chhajer that has already been previously applied to study polydisperse and monodisperse linear-linear blends next to surfaces. The resulting density profiles always show an enrichment of linear polymers in the immediate vicinity of the surface, due to entropic repulsion of the star core. However, the integrated surface excess of star monomers is sometimes positive, indicating an overall enrichment of stars. This excess increases with the number of star arms only up to a certain critical number and decreases thereafter. The critical arm number increases with compressibility (bulk concentration of C). The method of Gujrati and Chhajer is computationally ultrafast and can be carried out on a PC, even in the incompressible case, when simulations are unfeasible. Calculations of density profiles usually take less than 20 minutes on PCs.
We consider a general incompressible finite model protein of size M in its environment, which we represent by a semiflexible copolymer consisting of amino acid residues classified into only two species (H and P, see text) following Lau and Dill. We a llow various interactions between chemically unbonded residues in a given sequence and the solvent (water), and exactly enumerate the number of conformations W(E) as a function of the energy E on an infinite lattice under two different conditions: (i) we allow conformations that are restricted to be compact (known as Hamilton walk conformations), and (ii) we allow unrestricted conformations that can also be non-compact. It is easily demonstrated using plausible arguments that our model does not possess any energy gap even though it is supposed to exhibit a sharp folding transition in the thermodynamic limit. The enumeration allows us to investigate exactly the effects of energetics on the native state(s), and the effect of small size on protein thermodynamics and, in particular, on the differences between the microcanonical and canonical ensembles. We find that the canonical entropy is much larger than the microcanonical entropy for finite systems. We investigate the property of self-averaging and conclude that small proteins do not self-average. We also present results that (i) provide some understanding of the energy landscape, and (ii) shed light on the free energy landscape at different temperatures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا