ترغب بنشر مسار تعليمي؟ اضغط هنا

The BL Lac object H1426+428 ($zequiv 0.129$) is an established source of TeV $gamma$-rays and detections of these photons from this object also have important implications for estimating the Extragalactic Background Light (EBL) in addition to the und erstanding of the particle acceleration and $gamma$-ray production mechanisms in the AGN jets. We have observed this source for about 244h in 2004, 2006 and 2007 with the TACTIC $gamma$-ray telescope located at Mt. Abu, India. Detailed analysis of these data do not indicate the presence of any statistically significant TeV $gamma$-ray signal from the source direction. Accordingly, we have placed an upper limit of $leq1.18times10^{-12}$ $photons$ $cm^{-2}$ $s^{-1}$ on the integrated $gamma$-ray flux at 3$sigma$ significance level.
We study the quantum paraelectric-ferroelectric transition near a quantum critical point, emphasizing the role of temperature as a finite size effect in time. The influence of temperature near quantum criticality may thus be likened to a temporal Cas imir effect. The resulting finite-size scaling approach yields $frac{1}{T^2}$ behavior of the paraelectric susceptibility ($chi$) and the scaling form $chi(omega,T) = frac{1}{omega^2} F(frac{omega}{T})$, recovering results previously found by more technical methods. We use a Gaussian theory to illustrate how these temperature-dependences emerge from a microscopic approach; we characterize the classical-quantum crossover in $chi$, and the resulting phase diagram is presented. We also show that coupling to an acoustic phonon at low temperatures ($T$) is relevant and influences the transition line, possibly resulting in a reentrant quantum ferroelectric phase. Observable consequences of our approach for measurements on specific paraelectric materials at low temperatures are discussed.
In this paper we report on the Markarian 501 results obtained during our TeV $gamma$-ray observations from March 11 to May 12, 2005 and February 28 to May 7, 2006 for 112.5 hours with the TACTIC $gamma$-ray telescope. During 2005 observations for 45. 7 hours, the source was found to be in a low state and we have placed an upper limit of 4.62 $times$ 10$^{-12}$ photons cm$^{-2}$ s$^{-1}$ at 3$sigma$ level on the integrated TeV $gamma$-ray flux above 1 TeV from the source direction. However, during the 2006 observations for 66.8h, detailed data analysis revealed the presence of a TeV $gamma$-ray signal from the source with a statistical significance of 7.5$sigma$ above $E_{gamma}geq$ 1 TeV. The time averaged differential energy spectrum of the source in the energy range 1-11 TeV is found to match well with the power law function of the form ($dPhi/dE=f_0 E^{-Gamma}$) with $f_0=(1.66pm0.52)times 10^{-11}cm^{-2}s^{-1}TeV^{-1}$ and $Gamma=2.80pm0.27$.
105 - L. Palova , P. Chandra , K.M. Rabe 2007
We present a segregrated strain model that describes the thickness-dependent dielectric properties of ferroelectric films. Using a phenomenological Landau approach, we present results for two specific materials, making comparison with experiment and with first-principles calculations whenever possible. We also suggest a smoking gun benchtop probe to test our elastic scenario.
Physicists have long debated whether the hidden order in URu2Si2 is itinerant or localized, and it remains inaccessible to direct external probes. Recent observation of an overdamped collective mode in this material (C. Weibe et al, Nature Physics 3, 96-100 (2007)), appears to resolve this outstanding issue.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا