ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling Thickness-Dependence of Ferroelectric Thin Film Properties

157   0   0.0 ( 0 )
 نشر من قبل Premi Chandra
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a segregrated strain model that describes the thickness-dependent dielectric properties of ferroelectric films. Using a phenomenological Landau approach, we present results for two specific materials, making comparison with experiment and with first-principles calculations whenever possible. We also suggest a smoking gun benchtop probe to test our elastic scenario.



قيم البحث

اقرأ أيضاً

Recently, based on the phase-field modeling, it was predicted that Hf1-xZrxO2 (HZO) exhibits the morphotropic phase boundary (MPB) in its compositional phase diagram. Here, we investigate the effect of structural changes between tetragonal (t) and or thorhombic (o) phases on the ferroelectric and dielectric properties of HZO films to probe the existence of MPB region. The structural analysis show that by adjusting the ozone dosage during the atomic layer deposition process and annealing conditions, different ratios of t- to o-phases (f_(t/o) ) were achieved which consequently affect the ferroelectric and dielectric properties of the samples. Polarization versus electric field measurements show a remarkable increase in ferroelectric characteristics (Pr and Ec) of the sample that contains the minimum t-phase fraction (f_(t/o)~ 0.04). This sample shows the lowest dielectric constant compared to the other samples which is due to the formation of ferroelectric o-phase. The sample that contains the maximum f_(t/o)~ 0.41 demonstrates the highest dielectric response. By adjusting the f_(t/o), a large dielectric constant of ~ 55 is achieved. Our study reveals a direct relation between f_(t/o) and dielectric constant of HZO thin films which can be understood by considering the density of MPB region.
The properties of a ferroelectric, (001)-oriented, thin film clamped to a substrate are investigated analytically and numerically. The emphasis is on the tetragonal, polydomain, ferroelectric phase, using a three domain structure, as is observed expe rimentally. The previously used, very restrictive set of boundary conditions, arising from the domain walls, is relaxed, creating more modes for energy relaxation. It is argued that this approach gives a more realistic description of the clamped ferroelectric film. It is shown that for the ferroelectric oxides PbZr_(1-x)Ti_xO_3} the tetragonal, polydomain phase is present over a wide range of substrate induced strains for x_Ti>0.5, corresponding to the tetragonal side of the bulk phase diagram. A polydomain, rhombohedral phase is present for x_Ti<0.5, at the bulk rhombohedral side. Phase-temperature diagrams, and ferroelectric, dielectric and piezoelectric properties, as well as lattice parameters, are calculated as function of substrate induced strain and applied field. The analytical formulation allows the decomposition of these properties into three different causes: domain wall motion, field induced elastic effects and piezoelectric effects. It is found that domain wall motion and polarization rotation of the in-plane oriented domains under an applied field contribute most to the properties, while the out-of-plane oriented domains hardly contribute.
136 - Rene Meyer , Arturas Vailionis , 2007
A reduction of polarization in ultra-thin ferroelectric films appears to be fundamental to ferroelectricity at the nanoscale. For the model system PbTiO3 on SrTiO3, we report observation of the polarization vs. thickness relation. Distinct periodicit y changes of ferroelectric domains obtained from x-ray diffraction and total energy calculations reveal a linear lowering of the polarization below a critical thickness of ~12 nm. Independent polarization and tetragonality measurements provide insight into the fundamental relation between polarization and tetragonality in nanoscale ferroelectrics.
We report on a monotonic reduction of Curie temperature in dilute ferromagnetic semiconductor (Ga,Mn)As upon a well controlled chemical-etching/oxidizing thinning from 15 nm down to complete removal of the ferro- magnetic response. The effect already starts at the very beginning of the thinning process and is accompanied by the spin reorientation transition of the in-plane uniaxial anisotropy. We postulate that a negative gradient along the growth direction of self-compensating defects (Mn interstitial) and the presence of surface donor traps gives quantitative account on these effects within the p-d mean field Zener model with adequate mod- ifications to take a nonuniform distribution of holes and Mn cations into account. The described here effects are of practical importance for employing thin and ultrathin layers of (Ga,Mn)As or relative compounds in concept spintronics devices, like resonant tunneling devices in particular.
Aurivillius ferroelectric $Bi_2WO_6$ (BWO) encompasses a broad range of functionalities, including robust fatigue-free ferroelectricity, high photocatalytic activity, and ionic conductivity. Despite these promising characteristics, an in-depth study on the growth of BWO thin films and ferroelectric characterization, especially at the atomic scale, is still lacking. Here, we report pulsed laser deposition (PLD) of BWO thin films on (001) $SrTiO_3$ substrates and characterization of ferroelectricity using the scanning transmission electron microscopy (STEM) and piezoresponse force microscopy (PFM) techniques. We show that the background oxygen gas pressure used during PLD growth mainly determines the phase stability of BWO films, whereas the influence of growth temperature is comparatively minor. Atomically resolved STEM study of a fully strained BWO film revealed collective in-plane polar off-centering displacement of W atoms. We estimated the spontaneous polarization value based on polar displacement mapping to be about 54 $pm$ 4 ${mu}C cm^{-2}$, which is in good agreement with the bulk polarization value. Furthermore, we found that pristine film is composed of type-I and type-II domains, with mutually orthogonal polar axes. Complementary PFM measurements further elucidated that the coexisting type-I and type-II domains formed a multidomain state that consisted of 90$deg$ domain walls (DWs) alongside multiple head-to-head and tail-to-tail 180$deg$ DWs. Application of an electrical bias led to in-plane 180$deg$ polarization switching and 90$deg$ polarization rotation, highlighting a unique aspect of domain switching, which is immune to substrate-induced strain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا